(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

3rd Semester

Theory:

Sl.	CODE	Paper	Cont	act peri	iods	Total	Credits
No.			P	er week		Contact	
			L	T	P	Hrs	
1	PC-EE 301	Electric Circuit Theory	3	1	0	4	4
2	PC-EE 302	Analog Electronics	3	0	0	3	3
3	PC-EE 303	Electromagnetic field	3	0	0	3	3
		theory					
4	ES-ME 301	Engineering Mechanics	3	0	0	3	3
5	BS-M 301	Mathematics-III	3	0	0	3	3
6	BS-EE301	Biology for Engineers	3	0	0	3	3
7	MC-EE 301	Indian Constitution	3	0	0	3	0
		TOTAL OF SEMESTER:				22	19

Sl.	CODE	Paper	Contact periods Per week		Total Contact	Credits	
No.			L	T	P	Hrs	
1	PC-EE 391	Electric Circuit Theory Laboratory	0	0	2	2	1
2	PC-EE 392	Analog Electronics laboratory	0	0	2	2	1
3	PC-CS 391	Numerical Methods laboratory	0	0	2	2	1
		Total of Practical /				06	3
		Sessional					
TOT	AL OF SEMES	TER:				28	22

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

4th Semester

Theory:

Sl. No.	CODE	Paper	Contact periods Per week			Total Contact	Credits
110.			L	T	P	Hrs	
1	PC-EE 401	Electric machine-I	3	0	0	3	3
2	PC-EE 402	Digital Electronic	3	0	0	3	3
3	PC-EE 403	Electrical and Electronics Measurement	3	0	0	3	3
4	ES-EE 401	Thermal Power Engineering	3	0	0	3	3
5	HM-EE401	Values and Ethics in profession	3	0	0	3	3
6	MC- EE401	Environmental Science	3	0	0	3	0
		TOTAL OF SEMESTER:				18	15

Sl. No.	CODE	Paper	l	Contact periods Per week		Total Contact	Credits
			L	T	P	Hrs	
1	PC-EE 491	Electric Machine-I laboratory	0	0	2	2	1
2	PC-EE 492	Digital Electronics laboratory	0	0	2	2	1
3	PC-EE 493	Electrical and electronic measurement laboratory	0	0	2	2	1
4	ES-ME 491	Thermal Power Engineering laboratory	0		2	2	1
		Total of Practical /				08	4
		Sessional					
TOT	AL OF SEMES	TER:				26	19

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

<u>5th Semester</u>

Theory:

Sl. No.	CODE	Paper	Contact periods Per week			Total Contact	Credits
			L	T	P	Hrs	
1	PC-EE 501	Electric machine-II	3	0	0	3	3
2	PC-EE 502	Power System-I	3	0	0	3	3
3	PC-EE 503	Control system	3	0	0	3	3
4	PC-EE 504	Power Electronics	3	0	0	3	3
5	PE-EE 501 A/B/C	Elective I	3	0	0	3	3
6	OE 501 A/B/C	Elective II(Open Elective)	3	0	0	3	3
		TOTAL OF SEMESTER:				18	18

Sl. No.	CODE	Paper	Contact periods Per week			Total Contact	Credits
			L	T	P	Hrs	
1	PC-EE 591	Electric Machine-II laboratory	0	0	2	2	1
2	PC-EE 592	Power system-I laboratory	0	0	2	2	1
3	PC-EE 593	Control system laboratory	0	0	2	2	1
4	PC-EE 594	Power Electronics laboratory	0	0	2	2	1
		Total of Practical / Sessional				08	4
TOT	AL OF SEMES	TER:				26	22

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

6th Semester

Theory:

Sl.	CODE	Paper		act per		Total	Credits
No.			L	er weel T	P	Contact Hrs	
1	DC EE (01	D G . II		1			2
1	PC-EE 601	Power System-II	3		0	3	3
2	PC-EE-602	Micro processor & micro controller	3	0	0	3	3
3	PE-EE 601A/B/C	Digital control system/HVDC Transmission/Electrical Machine Design	3	0	0	3	3
4	PE-EE 602A/B/C	Electrical And Hybrid Vehicle/ Power Quality And Facts/ Industrial Electrical Systems	3	0	0	3	3
5	OE-EE 601A/B/C	Digital Signal Processing/ Communication Engineering/ VLSI And Micro Electronics	3	0	0	3	3
6	HM-EE-601	Economics For Engineers	3	0	0	3	3
		TOTAL OF SEMESTER:				18	18

Practical / Sessional:

Sl. No.	CODE	Paper	Contact periods Per week			Total Contact	Credits
110.			L	T	P	Hrs	
1	PC-EE 691	Power system-II laboratory	0	0	2	2	1
2	PC-EE692	Micro processor & microcontroller laboratory	0	0	2	2	1
2	PC-EE 681	Electrical & Electronic design laboratory	1	0	4	5	3
		Total of Practical / Sessional				09	05
TOTA	L AL OF SEMES					27	23

Summer Internship of 3-week duration after 6th semester. Students will be assessed based on submission of report on internship and presentation in a seminar in 7th semester

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

7th Semester

Theory:

Sl. No.	CODE	Paper	Contact periods Per week			Total Contact	Credits
			L	T	P	Hrs	
1	PC-EE 701	Electric Drive	3	0	0	3	3
2	PE-EE 701		3	0	0	3	3
3	OE-701		3	0	0	3	3
4	OE-702		3		0	3	3
5			3	0	0	3	3
	HM-701						
		TOTAL OF SEMESTER:				15	15

Sl. No.	CODE	Paper	Contact periods Per week			Total Contact	Credits
			L	T	P	Hrs	
1	PC-EE 791	Electric Drive laboratory	0	0	2	2	1
2	PW-EE 781	Project stage-I	0	0	4	4	2
3	PW-EE782	Seminar	0	0	0	0	1
		Total of Practical /				06	04
		Sessional					
TOTAL OF SEMESTER:					21	19	

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

8th Semester

Theory:

Sl. No.	CODE	Paper		act peri er week		Total Contact	Credits
			L	T	P	Hrs	
1	PC-EE 801	Utilization of Electric Power	3	0	0	3	3
2	PE- EE 801		3	0	0	3	3
3	OE-801		3	0	0	3	3
		TOTAL OF SEMESTER:				09	09

Sl. No.	CODE	Paper	Contact periods Per week			Total Contact	Credits
			L	T	P	Hrs	
1	PW-EE 881	Project stage-II	0	0	16	16	8
		Total of Practical /				16	08
		Sessional					
TOTAL OF SEMESTER:					25	17	

1st Year Curriculum for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

Maulana Abul Kalam Azad University of Technology, West Bengal

(Formerly West Bengal University of Technology)
BF- 142, Sector-I, Salt Lake, Kolkata- 700064, India

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

A. Definition of Credit:

1 Hr. Lecture (L) per week	1 credit
1 Hr. Tutorial (T) per week	1 credit
1 Hr. Practical (P) per week	0.5 credits

B. Range of credits:

A range of credits from 150 to 160 for a student to be eligible to get B.Tech Degree in Engineering. A student will be eligible to get B.Tech Degree *with Honours*, if he/she completes an additional 20 credits. These could be acquired through Massive Open Online Courses (MOOCs).

C. MOOCs for B. Tech Honours

The additional 20 credits (for obtaining B. Tech with Honours) are to be gained through MOOCs. The complete description of the MOOCs relevant for the first year course are given in *Annexure-I*. The courses for subsequent years of study will be posted subsequently.

D. Guidelines regarding Mandatory Induction Program for the new students

All concerned are requested to follow the guidelines given in *Annexure-II* (Notice dt.06/12/2017) concerning Mandatory Induction Program. The colleges/ Institute may also refer to the AICTE Model Curriculum for Undergraduate Degree Courses in Engineering & Technology (January 2018) -Volume I (Page No.31-38), if necessary.

E. Mandatory Additional Requirement for earning B. Tech Degree

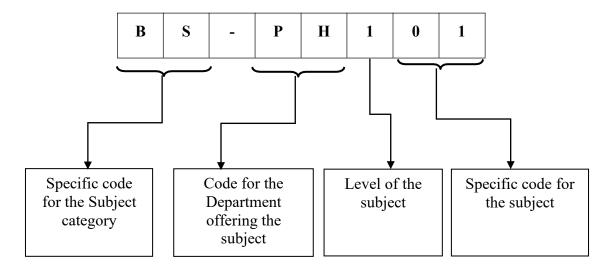
All concerned are requested to follow the guidelines in *Annexure-III* concerning Mandatory Additional Requirements.

F. Group division:

Group-A:

Chemistry based subjects: [Bio-Technology, Food Technology, Leather Technology, Textile Technology, Ceramic Technology, Chemical Engineering and any other Engineering that chooses to be Chemistry based] + Physics based subjects: [Mechanical Engineering, Production Engineering, Civil Engineering, Automobile Engineering, Marine Engineering, Apparel Production Engineering, Computer Science & Engineering, Information Technology.]

Group-B:


All Physics based subjects which are also Electrical & Electronics based [Electrical Engineering, Electronics & Communication Engineering, Applied Electronics & Instrumentation Engineering, Power Engineering, Electrical & Electronics Engineering, Bio-Medical Engineering, Instrumentation & Control Engineering]

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

G. Subject Numbering Scheme:

List of Codes for Subject Category			
Code	Category Name		
BS	Basic Science Courses		
ES	Engineering Science Courses		
НМ	Humanities and Social Sciences including Management courses		
PC	Professional core courses		
PE	Professional Elective courses		
OE	Open Elective courses		
MC	Mandatory courses		
PW	Project		

	List of Codes for Departments						
Code	Name of the Department	Code	Name of the Department				
APM	Apparel Production Engineering	ECE	Electronics & Communication Engineering				
AEIE	Applied Electronics & Instrumentation Engineering	FT	Food Technology				
AUE	Automobile Engineering	IT	Information Technology				
BME	Bio-Medical Engineering	ICE	Instrumentation & Control Engineering				
BT	Bio-Technology	LT	Leather Technology				
CT	Ceramic Technology	MRE	Marine Engineering				
CHE	Chemical Engineering	ME	Mechanical Engineering				
CE	Civil Engineering	PWE	Power Engineering				
CSE	Computer Science & Engineering	PE	Production Engineering				
EEE	Electrical & Electronics Engineering	TT	Textile Technology				
EE	Electrical Engineering						

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

	First Year First Semester Mandatory Induction Program- 3 weeks duration								
SI	Category	Subject Code	Subject Name		Total Number of contact hours		_		Credits
No.				L	T	P			
The	ory								
1	Basic Science course	BS-PH101/ BS-CH101	Physics-I (Gr-A)/ Chemistry-I(Gr-B)	3	1	0	4		
2	Basic Science course	BS-M101/ BS-M102	Mathematics –IA*/ Mathematics –IB *	3	1	0	4		
3	Engineering Science Courses	ES-EE101	Basic Electrical Engineering	3	1	0	4		
	Total Theory		9	3	0	12			
Prac	ctical								
1	Basic Science course	BS-PH191/ BS-CH191	Physics-I Laboratory (Gr-A)/ Chemistry-I Laboratory (Gr-B)	0	0	3	1.5		
2	Engineering Science Courses	ES-EE191	Basic Electrical Engineering Laboratory	0	0	2	1		
3	Engineering Science Courses	ES-ME191/ ES-ME192	Engineering Graphics & Design(Gr-B)/ Workshop/Manufacturing Practices(Gr-A)	1	0	4	3		
		Total Praction	cal	1		9	5.5		
		Total of First Se	mester	10	3	9	17.5		

^{*} Mathematics –IA (BS-M101) - CSE & IT Mathematics –IB (BS-M102) - All stream except CSE & IT

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

	First Year Second Semester						
SI	Category	Subject	Subject Name	Total Number of contact hours			Credits
No.	<i>.</i>	Code	,	L	T	P]
The	ory						
1	Basic Science courses	BS-PH201/ BS-CH201	Physics-I (Gr-B)/ Chemistry-I (Gr-A)	3	1	0	4
2	Basic Science courses	BS-M201/ BS-M202	Mathematics –IIA [#] / Mathematics –IIB [#]	3	1	0	4
3	Engineering Science Courses	ES-CS201	Programming for Problem Solving	3	0	0	3
4	Humanities and Social Sciences including Management courses	HM-HU201	English	2	0	0	2
		Total Theory		11	2	0	13
Prac	etical						
1	Basic Science courses	BS-PH291/ BS-CH291	Physics-I Laboratory (Gr-B)/ Chemistry-I Laboratory (Gr-A)	0	0	3	1.5
2	Engineering Science Courses	ES-CS291	Programming for Problem Solving	0	0	4	2
3	Engineering Science Courses	ES-ME291/ ES-ME292	Engineering Graphics & Design(Gr-A)/ Workshop/Manufacturing Practices(Gr-B)	1	0	4	3
4	Humanities and Social Sciences including Management courses	HM-HU291	Language Laboratory	0	0	2	1
		Total Practica	l	1	0	13	7.5
	Total of Second Semester				2	13	20.5

Mathematics –II (BS-M201) - CSE & IT Mathematics –II (BS-M202) - All stream except CSE & IT

	Group-A	Group-B
1 st Year 1 st Semester	Physics-I (BS-PH101); Workshop/Manufacturing Practices (ES-ME192)	Chemistry-I (BS-CH101); Engineering Graphics & Design (ES-ME191)
1 st Year 2 nd Semester	Chemistry-I (BS-CH201); Engineering Graphics & Design (ES-ME291)	Physics-I (BS-PH201); Workshop/Manufacturing Practices (ES-ME292)

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

Course Code: BS-PH101/BS-PH201	Category: Basic Science Courses
Course Title: Physics-I	Semester : First/ Second
L-T-P : 3-1-0	Credit:4
Pre-Requisites:	

Course objectives:

Basic concepts of mechanics, optics and its applications, electricity, magnetism and qualitative understanding of concepts of quantum physics and statistical mechanics.

1. Mechanics (7L)

Problems including constraints & friction. Basic ideas of vector calculus and partial differential equations. Potential energy function F = -grad V, equipotential surfaces and meaning of gradient. Conservative and non-conservative forces. Conservation laws of energy & momentum. Non-inertial frames of reference. Harmonic oscillator; Damped harmonic motion forced oscillations and resonance. Motion of a rigid body in a plane and in 3D. Angular velocity vector. Moment of inertia.

2. Optics (5L)

- Distinction between interference and diffraction, Fraunhofer and Fresnel diffraction, Fraunhofer
 diffraction at single slit, double slit, and multiple slits (only the expressions for max;min, & intensity
 and qualitative discussion of fringes); diffraction grating(resolution formulae only), characteristics of
 diffration grating and its applications.
- Polarisation: Introduction, polarisation by reflection, polarisation by double reflection, scattering of light, circular and elliptical polarisation, optical activity.
- Lasers: Principles and working of laser: population inversion, pumping, various modes, threshold population inversion with examples.

3. Electromagnetism and Dielectric Magnetic Properties of Materials (8L)

- Maxwell's equations. Polarisation, permeability and dielectric constant, polar and non-polar dielectrics, internal fields in a solid, Clausius- Mossotti equation(expression only), applications of dielectrics.
- Magnetisation, permeability and susceptibility, classification of magnetic materials, ferromagnetism, magnetic domains and hysteresis, applications.

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

4. Quantum Mechanics (16L)

Introduction to quantum physics, black body radiation, explanation using the photon concept,
 Compton effect, de Broglie hypothesis, wave-particle duality, verification of matter waves,
 uncertainty principle, Schrodinger wave equation, particle in box, quantum harmonic oscillator,
 hydrogen atom.

5. Statistical Mechanics (8L)

• Macrostate, Microstate, Density of states, Qualitative treatment of Maxwell Boltzmann, Fermi-Dirac and Bose-Einstein statistics.

Course outcomes:

Students will be familiar with

- Basic concepts of mechanics
- Bragg's Law and introduction to the principles of lasers, types of lasers and applications.
- Various terms related to properties of materials such as, permeability, polarization, etc.
- Some of the basic laws related to quantum mechanics as well as magnetic and dielectric properties of materials.
- Simple quantum mechanics calculations.

•

- 1. Introduction to Electrodynamics, David J. Griffiths, Pearson Education India Learning Private Limited
- 2. Principles of Physics, 10ed, David Halliday, Robert Resnick Jearl Walker, Wiley
- 3. Electricity, Magnetism, and Light, Wayne M. Saslow, Academic Press
- 4. Engineering Mechanics (In SI Units) (SIE), S. Timoshenko, D.H. Young, J.V. Rao, Sukumar Pati, McGraw Hill Education
- 5. Classical mechanics, Narayan Rana, Pramod Joag, McGraw Hill Education
- 6. Introduction to Classical Mechanics, R Takwale, P Puranik, McGraw Hill Education
- 7. Engineering Mechanics, M.K. Harbola, Cengage India
- 8. An Introduction to Mechanics (SIE), David Kleppner, Robert Kolenkow, McGraw Hill Education
- 9. Principles of mechanics, John L. Synge and Byron A. Griffith, New York, McGraw-Hill
- 10. Mechanics (Dover Books on Physics), J. P. Den Hartog, Dover Publications Inc.
- 11. Engineering Mechanics: Dynamics, L.G. Kraige J.L. Meriam, Wiley
- 12. Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles, Robert Eisberg, Robert Resnick, Wiley
- 13. Introduction to Quantum Mechanics, J. Griffiths David, Pearson Education
- 14. Modern Quantum Mechanics, J. J. Sakurai, Cambridge University Press
- 15. Optics, Hecht, Pearson Education
- 16. Optics, Ghatak, McGraw Hill Education India Private Limited
- 17. Fundamentals of Statistical and Thermal Physics, Reif, Sarat Book Distributors
- 18. Statistical Mechanics, Pathria, Elsevier
- 19. Statistical Physics, L.D.Landau , E.M. Lifshitz, Butterworth-Heinemann

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

Course Code : BS-CH101/ BS-CH201	Category: Basic Science Courses
Course Title : Chemistry-I	Semester : First/ Second
L-T-P : 3-1-0	Credit:4
Pre-Requisites:	

Detailed contents

i) Atomic and molecular structure (10 lectures)

Schrodinger equation. Particle in a box solutions and their applications for simple sample. Molecular orbitals of diatomic molecules (e.g.H₂). Energy level diagrams of diatomic. Pi-molecular orbitals of butadiene and benzene and aromaticity. Crystal field theory and the energy level diagrams for transition metal ions and their magnetic properties. Band structure of solids and the role of doping on band structures.

ii) Spectroscopic techniques and applications (8 lectures)

Principles of spectroscopy and selection rules. Electronic spectroscopy. Fluorescence and its applications in medicine. Vibrational and rotational spectroscopy of diatomic molecules. Applications. Nuclear magnetic resonance and magnetic resonance imaging, surface characterisation techniques. Diffraction and scattering. iii)Intermolecular forces and potential energy surfaces (4 lectures)

Ionic, dipolar and van Der Waals interactions. Equations of state of real gases and critical phenomena.

iv) Use of free energy in chemical equilibria (8 lectures)

First and second laws of thermodynamics and thermodynamic functions: energy, entropy and free energy. Estimations of entropy and free energies. Free energy and emf. Cell potentials, the Nernst equation and applications. Acid base, oxidation reduction and solubility equilibria. Water chemistry. Corrosion. Use of free energy considerations in metallurgy through Ellingham diagrams.

v) Periodic properties (4 Lectures)

Effective nuclear charge, penetration of orbitals, variations of s, p, d and f orbital energies of atoms in the periodic table, electronic configurations, atomic and ionic sizes, ionization energies, electron affinity and electronegativity, polarizability, oxidation states, coordination numbers and geometries, hard soft acids and bases, molecular geometries

vi) Stereochemistry (4 lectures)

Representations of 3 dimensional structures, structural isomers and stereoisomers, configurations and symmetry and chirality, enantiomers, diastereomers, optical activity, absolute configurations and conformational analysis. Isomerism in transitional metal compounds

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

vii) Organic reactions and synthesis of a drug molecule (4 lectures)

Introduction to reactions involving substitution, addition, elimination, oxidation, reduction, cyclization and ring openings. Synthesis of a commonly used drug molecule.

Course Outcomes

The concepts developed in this course will aid in quantification of several concepts in chemistry that have been introduced at the 10+2 levels in schools. Technology is being increasingly based on the electronic, atomic and molecular level modifications. Quantum theory is more than 100 years old and to understand phenomena at nanometer levels, one has to base the description of all chemical processes at molecular levels. The course will enable the student to:

Analyse microscopic chemistry in terms of atomic and molecular orbitals and intermolecular forces.

Rationalise bulk properties and processes using thermodynamic considerations.

Distinguish the ranges of the electromagnetic spectrum used for exciting different molecular energy levels in various spectroscopic techniques

Rationalise periodic properties such as ionization potential, electronegativity, oxidation states and electronegativity.

List major chemical reactions that are used in the synthesis of molecules.

- 1. Engineering Chemistry, Satyaprakash, Khanna Book Publishing, Delhi
- 2. University chemistry, by B. H. Mahan
- 3. Chemistry: Principles and Applications, by M. J. Sienko and R. A. Plane
- 4. Fundamentals of Molecular Spectroscopy, by C. N. Banwell
- 5. Engineering Chemistry (NPTEL Web-book), by B. L. Tembe, Kamaluddin and M. S. Krishnan
- 6. Physical Chemistry, by P. W. Atkins
- 7. Spectroscopy of Organic Compounds, by P.S.Kalsi, New Age International Pvt Ltd Publishers
- 8. Physical Chemistry, P. C. Rakshit, Sarat Book House
- 9. Organic Chemistry: Structure and Function by K. P. C. Volhardt and N. E. Schore, 5th Edition http://bcs.whfreeman.com/vollhardtschore5e/default.asp

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

Course Code : BS-M101	Category: Basic Science Course
Course Title : Mathematics – I A	Semester : First (CSE & IT)
L-T-P : 3-1-0	Credit: 4
Pre-Requisites: High School Mathematics	1

Module No.	Description of Topic	Lectures Hours
	Calculus (Integration):	
	Evolutes and involutes; Evaluation of definite and improper integrals; Beta and	
1	Gamma functions and their properties; Applications of definite integrals to evaluate surface areas and volumes of revolutions.	8
	Calculus (Differentiation):	
	Rolle's Theorem, Mean value theorems, Taylor's and Maclaurin's theorems with	
2	remainders; Indeterminate forms and L'Hospital's rule; Maxima and minima.	6
	Matrices:	
	Matrices, Vectors: addition and scalar multiplication, matrix multiplication; Linear	
3	systems of equations, linear Independence, rank of a matrix, determinants,	7
3	Cramer's Rule, inverse of a matrix, Gauss elimination and Gauss-Jordan	/
	elimination.	
	Vector Spaces:	
	Vector Space, linear dependence of vectors, Basis, Dimension; Linear	
4	transformations (maps), Range and Kernel of a linear map, Rank and Nullity,	9
	Inverse of a linear transformation, Rank-Nullity theorem, composition of linear maps, Matrix associated with a linear map.	
	Vector Spaces (Continued):	
	Eigenvalues, Eigenvectors, Symmetric, Skew-symmetric, and Orthogonal	
	Matrices, Eigenbases.	
5	Diagonalization; Inner product spaces, Gram-Schmidt orthogonalization.	10

Course Outcomes:

The students will be able to:

Apply the concept and techniques of differential and integral calculus to determine curvature and evaluation of different types of improper integrals.

Understand the domain of applications of mean value theorems to engineering problems.

Learn different types of matrices, concept of rank, methods of matrix inversion and their applications.

Understand linear spaces, its basis and dimension with corresponding applications in the field of computer science.

Learn and apply the concept of eigen values, eigen vectors, diagonalisation of matrices and orthogonalization in inner product spaces for understanding physical and engineering problems

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology (Applicable from the academic session 2018-2019)

- 1. Reena Garg, Engineering Mathematics-I, Khanna Publishers.
- 2. Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons.
- 3. Michael Greenberg, Advanced Engineering Mathematics, Pearson.
- 4. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers.
- 5. Kanti B. Dutta, Mathematical Methods of Science and Engineering, Cenage Learning.
- 6. Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi.
- 7. S.K. Mapa, Higher Algebra: Abstract and Linear, Sarat Book House Pvt.Ltd.
- 8. Hoffman and Kunze: Linear algebra, PHI.

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

Course Code : BS-M102	Category: Basic Science Course
Course Title: Mathematics –I B	Semester: First (All stream except CSE & IT)
L-T-P : 3-1-0	Credit: 4
Pre-Requisites: High School Mathematics	·

Module No.	Description of Topic	Lectures Hours
	Calculus (Integration):	
	Evolutes and involutes; Evaluation of definite and improper integrals; Beta and	8
1	Gamma functions and their properties; Applications of definite integrals to	-
	evaluate surface areas and volumes of revolutions.	
	Calculus (Differentiation):	
	Rolle's Theorem, Mean value theorems, Taylor's and Maclaurin's theorems with	6
2	remainders; Indeterminate forms and L'Hospital's rule; Maxima and minima.	O
	Sequence and Series:	
	Convergence of sequence and series, tests for convergence; Power series,	11
3	Taylor's series, series for exponential, trigonometric and logarithm functions;	11
	Fourier series: Half range sine and cosine series, Parseval's theorem.	
	Multivariate Calculus:	
	Limit, continuity and partial derivatives, Directional derivatives, Total	9
4	derivative; Tangent plane and normal line; Maxima, minima and saddle points;	
	Method of Lagrange multipliers; Gradient, Curl and Divergence.	
	Matrices:	
	Inverse and rank of a matrix, Rank-nullity theorem; System of linear equations;	8
5	Symmetric, Skew-symmetric and Orthogonal matrices; Determinants;	O
	Eigenvalues and Eigenvectors; Diagonalization of matrices; Cayley-Hamilton	
	Theorem, and Orthogonal transformation.	

Course Outcomes:

After completing the course the student will be able to

Apply the concept and techniques of differential and integral calculus to determine curvature and evaluation of different types of improper integrals.

Understand the domain of applications of mean value theorems to engineering problems.

Learn the tools of power series and Fourier series to analyze engineering problems and apply the concept of convergence of infinite series in many approximation techniques in engineering disciplines.

Apply the knowledge for addressing the real life problems which comprises of several variables or attributes and identify extremum points of different surfaces of higher dimensions.

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

Understand different types of matrices, their eigen values, eigen vectors, rank and also their orthogonal transformations which are essential for understanding physical and engineering problems.

- 1. Reena Garg, Engineering Mathematics-I, Khanna Publishers.
- 2. Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons.
- 3. Michael Greenberg, Advanced Engineering Mathematics, Pearson.
- 4. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers.
- 5. Kanti B. Dutta, Mathematical Methods of Science and Engineering, Cenage Learning.
- 6. Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi.

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

Course Code : ES-EE101	Category: Engineering Science Courses
Course Title: Basic Electrical Engineering	Semester : First
L-T-P : 3-1-0	Credit: 4
Pre-Requisites:	

Detailed contents:

Module 1: DC Circuits (8 hours)

Electrical circuit elements (R, L and C), voltage and current sources, Kirchoff current and voltage laws, analysis of simple circuits with dc excitation. Superposition, Thevenin and Norton Theorems. Time-domain analysis of first-order RL and RC circuits.

Module 2: AC Circuits (8 hours)

Representation of sinusoidal waveforms, peak and rms values, phasor representation, real power, reactive power, apparent power, power factor. Analysis of single-phase ac circuits consisting of R, L, C, RL, RC, RLC combinations (series and parallel), resonance. Three phase balanced circuits, voltage and current relations in star and delta connections.

Module 3: Transformers (6 hours)

Magnetic materials, BH characteristics, ideal and practical transformer, equivalent circuit, losses in transformers, regulation and efficiency. Auto-transformer and three-phase transformer connections.

Module 4: Electrical Machines (8 hours)

Generation of rotating magnetic fields, Construction and working of a three-phase induction motor, Significance of torque-slip characteristic. Loss components and efficiency, starting and speed control of induction motor. Single-phase induction motor. Construction, working, torque-speed characteristic and speed control of separately excited dc motor. Construction and working of synchronous generators.

Module 5: Power Converters (6 hours)

DC-DC buck and boost converters, duty ratio control. Single-phase and three-phase voltage source inverters; sinusoidal modulation.

Module 6: Electrical Installations (6 hours)

Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, Earthing. Types of Batteries, Important Characteristics for Batteries. Elementary calculations for energy consumption, power factor improvement and battery backup.

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

Course Outcomes

To understand and analyze basic electric and magnetic circuits

To study the working principles of electrical machines and power converters.

To introduce the components of low voltage electrical installations

Learning Recourses:

- 1. Ritu Sahdev, Basic Electrical Engineering, Khanna Book Publishing Co. (P) Ltd., Delhi.
- 2. D. P. Kothari and I. J. Nagrath, "Basic Electrical Engineering", Tata McGraw Hill, 2010.
- 3. D. C. Kulshreshtha, "Basic Electrical Engineering", McGraw Hill, 2009.
- 4. L. S. Bobrow, "Fundamentals of Electrical Engineering", Oxford University Press, 2011.
- 5. E. Hughes, "Electrical and Electronics Technology", Pearson, 2010.
- 6. V. D. Toro, "Electrical Engineering Fundamentals", Prentice Hall India, 1989.

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

Course Code: BS-PH191/ BS-PH291 Category: Basic Science cour	
Course Title : Physics-I Laboratory	Semester : First/ Second
L-T-P : 0-0-3	Credit:1.5
Pre-Requisites:	·

Choose 10 experiments including at least one from Optics, Electricity and Magnetism and Quantum Mechanics and at least a total of six from these three groups.

Experiments in Optics

- 1. Determination of dispersive power of the material of a prism
- 2. Determination of wavelength of a monochromatic light by Newton's ring
- 3. Determination of wavelength of a monochromatic light by Fresnel's bi-prism
- 4. Determination of wavelength of the given laser source by diffraction method

Electricity & Magnetism experiments

- 1. Determination of thermo electric power of a given thermocouple.
- 2. Determination of specific charge (e/m) of electron by J.J. Thompson's method.
- 3. Determination of dielectric constant of a given dielectric material.
- 4. Determination of Hall coefficient of a semiconductor by four probe method.
- 5. To study current voltage characteristics, load response, areal characteristic and spectral response of a photovoltaic solar cell.
- 6. Determination of resistance of ballistic galvanometer by half deflection method and study of variation of logarithmic decrement with series resistance.
- 7. Determination of unknown resistance using Carey Foster's bridge
- 8. Study of Transient Response in LR, RC and LCR circuits using expeyes
- 9. Generating sound from electrical energy using expeyes

Experiments in Quantum Physics

- 1. Determination of Stefan-Boltzmann constant.
- 2. Determination of Planck constant using photocell.
- 3. Determination of Lande-g factor using Electron spin resonance spectrometer.
- 4. Determination of Rydberg constant by studying Hydrogen spectrum.
- 5. Determination of Band gap of semiconductor.
- 6. To study current voltage characteristics, load response, areal characteristic and spectral response of a photovoltaic solar cell.

Miscellaneous experiments

- 1. Determination of Young's modulus of elasticity of the material of a bar by the method of flexure
- 2. Determination of bending moment and shear force of a rectangular beam of uniform cross-section
- 3. Determination of modulus of rigidity of the material of a rod by static method
- 4. Determination of rigidity modulus of the material of a wire by dynamic method
- 5. To determine the moment of inertia of a body about an axis passing through its centre of gravity and to determine the modulus of rigidity of the material of the suspended wire
- 6. Determination of coefficient of viscosity by Poiseulle's capillary flow method

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

Course Code: BS-CH191/BS-CH291	Category: Basic Science Courses
Course Title: Chemistry-I Laboratory	Semester : First/ Second
L-T-P : 0-0-3	Credit:1.5
Pre-Requisites:	

Choose 10 experiments from the following:

- 1. Conductometric titration for determination of the strength of a given HCl solution by titration against a standard NaOH solution.
- 2. pH- metric titration for determination of strength of a given HCl solution against a standard NaOH solution.
- 3. Determination of dissolved oxygen present in a given water sample.
- 4. To determine chloride ion in a given water sample by Argentometric method (using chromate indicator solution)
- 5. Determination of surface tension and viscosity
- 6. Thin layer chromatography
- 7. Ion exchange column for removal of hardness of water
- 8. Determination of the rate constant of a reaction
- 9. Determination of cell constant and conductance of solutions
- 10. Potentiometry determination of redox potentials and emfs
- 11. Saponification/acid value of an oil
- 12. Chemical analysis of a salt
- 13. Determination of the partition coefficient of a substance between two immiscible liquids
- 14. Adsorption of acetic acid by charcoal
- 15. Use of the capillary viscosimeters to the demonstrate of the isoelectric point as the pH of minimum viscosity for gelatin sols and/or coagulation of the white part of egg.

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

Course Code : ES-EE191	Category: Engineering Science Courses	
Course Title: Basic Electrical Engineering Laboratory	Semester : First	
L-T-P : 0-0-2	Credit: 1	
Pre-Requisites:		

Choose 10 experiments from the following:

- 1. First activity: Introduction to basic safety precautions and mentioning of the do's and Don'ts. Noting down list of experiments to be performed, and instruction for writing the laboratory reports by the students. Group formation. Students are to be informed about the modalities of evaluation.
- 2. Introduction and uses of following instruments:
 - (a) Voltmeter
 - (b) Ammeter
 - (c) Multimeter
 - (d) Oscilloscope

Demonstration of real life resistors, capacitors with color code, inductors and autotransformer.

- 3. Demonstration of cut-out sections of machines: DC machine, Induction machine, Synchronous machine and single phase induction machine.
- 4. Calibration of ammeter and Wattmeter.
- 5. Determination of steady state and transient response of R-L, R-C and R-L-C circuit to a step change in voltage.
- 6. Determination of steady state response of R-L and R-C and R-L-C circuit and calculation of impedance and power factor.
- 7. Determination of resonance frequency and quality factor of series and parallel R-L-C circuit.
- 8. (a) Open circuit and short circuit test of a single-phase transformer
 - (b) Load test of the transformer and determination of efficiency and regulation
- 9. Demonstration of three phase transformer connections. Voltage and current relationship, phase shifts between the primary and secondary side.
- 10. Measurement of power in a three phase unbalanced circuit by two wattmeter method.
- 11. Determination of Torque –Speed characteristics of separately excited DC motor.
- 12. Determination of Torque speed characteristics and observation of direction reversal by change of phase sequence of connection of Induction motor.
- 13. Determination of operating characteristics of Synchronous generator.
- 14. Demonstration of operation of (a) DC-DC converter (b) DC-AC converter (c) DC-AC converter for speed control of an Induction motor
- 15. Demonstration of components of LT switchgear.

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology (Applicable from the academic session 2018-2019)

Course Code: ES-ME191/ES-ME 291	Category: Engineering Science Courses
Course Title: Engineering Graphics & Design	Semester : First/ Second
L-T-P : 1-0-4	Credit: 3
Pre-Requisites:	

Sl. No.	Content	Lecture (L)	Practical (P)
	INTRODUCTION TO ENGINEERING DRAWING		
	Principles of Engineering Graphics and their significance, usage of		
1	Drawing instruments, lettering, Different types of lines and their use;	1	4
	Drawing standards and codes.		
	LETTERING, DIMENSIONING, SCALES		
2	Plain scale, Diagonal scale and Vernier Scales.	1	4
	GEOMETRICAL CONSTRUCTION AND CURVES		
	Construction of polygons, Conic sections including the Rectangular		
3	Hyperbola (General method only); Cycloid, Epicycloid, Hypocycloid,	1	4
	Involute, Archemedian Spiral.		
	PROJECTION OF POINTS, LINES, SURFACES		
	Principles of Orthographic Projections-Conventions - 1st and 3rd angle		
4	projection, Projections of Points and lines inclined to both planes;	1	4
	Projections of planes (Rectangle, pentagon, Hexagon etc.) inclined Planes		
	- Auxiliary Planes.		
	PROJECTION OF REGULAR SOLIDS		
	Regular solids inclined to both the Planes- Auxiliary Views; Draw		
5	simple annotation, dimensioning and scale (Cube, Pyramid, Prism,	1	4
	Cylinder, Cone).		
	COMBINATION OF REGULAR SOLIDS, FLOOR PLANS		
	Regular solids in mutual contact with each other like Spheres in contact		
6	with cones standing on their base. Floor plans that include: windows,	1	4
	doors, and fixtures such as WC, bath, sink, shower, etc.		
	ISOMETRIC PROJECTIONS		
	Principles of Isometric projection – Isometric Scale, Isometric		
7	Views, Conventions; Isometric Views of lines, Planes, Simple and	1	4
	compound Solids; Conversion of Isometric Views to Orthographic		
	Views and Vice-versa, Conventions;		

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology (Applicable from the academic session 2018-2019)

	SECTIONS AND SECTIONAL VIEWS OF RIGHT ANGULAR	,	
	SOLIDS		
	Prism, Cylinder, Pyramid, Cone - Auxiliary Views; Development of		
8	surfaces of Right Regular Solids - Prism, Pyramid, Cylinder and Cone;	1	4
	Draw the sectional orthographic views of geometrical solids, objects		
	from industry and dwellings (foundation to slab only)		
	OVERVIEW OF COMPUTER GRAPHICS, CUSTOMISATION&		
	CAD DRAWING		
	listing the computer technologies that impact on graphical		
	communication, Demonstrating knowledge of the theory of CAD		
	software [such as: The Menu System, Toolbars (Standard, Object		
	Properties, Draw, Modify and Dimension), Drawing Area (Background,		
	Crosshairs, Coordinate System), Dialog boxes and windows, Shortcut		
	menus (Button Bars), The Command Line (where applicable), The Status		
9	Bar, Different methods of zoom as used in CAD, Select and erase	1	4
	objects.; Isometric Views of lines, Planes, Simple and compound Solids];		
	Set up of the drawing page and the printer, including scale settings,		
	Setting up of units and drawing limits; ISO and ANSI standards for		
	coordinate dimensioning and tolerancing; Orthographic constraints,		
	Snap to objects manually and automatically; Producing drawings		
	by using various coordinate input entry methods to draw straight lines,		
	Applying various ways of drawing circles;		
	ANNOTATIONS, LAYERING & OTHER FUNCTIONS		
	applying dimensions to objects, applying annotations to drawings;		
	Setting up and use of Layers, layers to create drawings, Create, edit		
	and use customized layers; Changing line lengths through modifying		
	existing lines (extend/lengthen); Printing documents to paper using		
	the print command; orthographic projection techniques; Drawing		
	sectional views of composite right regular geometric solids and project		
10	the true shape of the sectioned surface; Drawing annotation, Computer-	2	8
	aided design (CAD) software modeling of parts and assemblies.		
	Parametric and non-parametric solid, surface, and wireframe models. Part		
	editing and two-dimensional documentation of models. Planar projection		
	theory, including sketching of perspective, isometric, multiview,		
	auxiliary, and section views. Spatial visualization exercises.		
	Dimensioning guidelines, tolerancing techniques; dimensioning and scale		
	multi views of dwelling;		

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

	DEMONSTRATION OF A SIMPLE TEAM DESIGN PROJECT	,		
	Geometry and topology of engineered components: creation of			
	engineering models and their presentation in standard 2D blueprint form			
	and as 3D wire-frame and shaded solids; meshed topologies for			
	engineering analysis and tool-path generation for component			
	manufacture; geometric dimensioning and tolerancing; Use of solid-			
11	modeling software for creating associative models at the component and	2	8	
	assembly levels; floor plans that include: windows, doors, and fixtures			
	such as WC, bath, sink, shower, etc. Applying colour coding according to			
	building drawing practice; Drawing sectional elevation showing			
	foundation to ceiling; Introduction to Building Information Modelling			
	(BIM).			
1			1	

Course Outcomes

The student will learn:

- Introduction to engineering design and its place in society
- Exposure to the visual aspects of engineering design
- Exposure to engineering graphics standards
- Exposure to solid modelling

General Instructions

- 1. In every topic some problems are to be done in the class and some are to be given to students as home assignment.
- 2. The problems for class work are to be prepared on drawing sheet of A1 size in the class/ using AutoCAD software.
- 3. The problems for home assignments are to be prepared on drawing copy/ using AutoCAD software.
- 4. Print out of every assignment is to be taken for CAD Drawings on Drawing sheets (A4 Sheets).
- 5. A title block must be prepared in each sheet/assignment.

Following is the list of drawing instruments that required for making engineering drawings on paper with perfection.

- 1. Drawing Board
- 2. Mini drafter/ Set-squares (45°–45° & 60°–90°), T-square
- 3. Protractor (180°, 360°)
- 4. Scales (Plain, Diagonal)
- 5. Compass (Small and Large)
- 6. Divider (Small and Large)

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

- 7. French Curves
- 8. Drawing paper (A1 Size)
- 9. Drawing pencil (H, HB, B)
- 10. Sharpener
- 11. Eraser
- 12. Drawing pins & clips
- 13. Duster or handkerchief etc.

- 1. Pradeep Jain, Ankita Maheswari, A.P. Gautam, Engineering Graphics & Design, Khanna Publishing House
- 2. Bhatt N.D., Panchal V.M. & Ingle P.R., (2014), Engineering Drawing, Charotar Publishing House
- 3. Agrawal B. & Agrawal C. M. (2012), Engineering Graphics, TMH Publication
- 4. Shah, M.B. & Rana B.C. (2008), Engineering Drawing and Computer Graphics, Pearson Education
- 5. Narayana, K.L. & P Kannaiah (2008), Text book on Engineering Drawing, Scitech Publishers
- 6. Corresponding set of CAD Software Theory and User Manuals

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

Course Code : ES-ME192/ ES-ME 292	Category: Engineering Science Courses	
Course Title: Workshop/ Manufacturing Practices	Semester : First/ Second	
L-T-P : 1-0-4 Credit:3		
Pre-Requisites:		

(i) Lectures & videos:

Detailed contents:

- 1. Manufacturing Methods- casting, forming, machining, joining, advanced manufacturing methods
- 2. CNC machining, Additive manufacturing
- 3. Fitting operations & power tools
- 4. Electrical &Electronics
- 5. Carpentry
- 6. Plastic moulding, glass cutting
- 7. Metal casting
- 8. Welding (arc welding & gas welding), brazing

(ii) Workshop Practice:

Machine shop (8 hours)

Typical jobs that may be made in this practice module:

To make a pin from a mild steel rod in a lathe.

To make rectangular and vee slot in a block of cast iron or mild steel in a shaping and / or milling machine.

Fitting shop (8 hours)

Typical jobs that may be made in this practice module:

To make a Gauge from MS plate.

Carpentry (8 hours)

Typical jobs that may be made in this practice module:

To make wooden joints and/or a pattern or like.

Welding shop (8 hours (Arc welding 4 hrs + gas welding 4 hrs))

Typical jobs that may be made in this practice module:

ARC WELDING (4 hours): To join two thick (approx 6mm) MS plates by manual metal arc welding.

GAS WELDING (4 hours): To join two thin mild steel plates or sheets by gas welding.

Casting (8 hours)

Typical jobs that may be made in this practice module:

One/ two green sand moulds to prepare, and a casting be demonstrated.

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

Smithy (4 hours) \sim 4 hours

Typical jobs that may be made in this practice module:

A simple job of making a square rod from a round bar or like.

Plastic moulding & Glass cutting (4 hours)

Typical jobs that may be made in this practice module:

For plastic moulding, making at least one simple plastic component should be made.

For glass cutting, three rectangular glass pieces may be cut to make a kaleidoscope using a black colour diamond cutter, or similar other components may be made.

Electrical & Electronics (8 hours)

Familiarization with LT switchgear elements, making its sketches and noting down its specification. Kitkat fuse, Glass cartridge fuse, Plastic fuse holders (optional), Iron clad isolators, MCB style isolators, Single phase MCB, Single-phase wire, wiring cable.

Demonstration of domestic wiring involving two MCB, two piano key switches, one incandescent lamp, one LED lamp and plug point.

Simple wiring exercise to be executed to understand the basic electrical circuit.

Simple soldering exercises to be executed to understand the basic process of soldering.

Fabrication of a single-phase full wave rectifier with a step down transformer using four diodes and electrolytic capacitor and to find its volt-ampere characteristics to understand basic electronic circuit fabrication.

Examinations could involve the actual fabrication of simple components, utilizing one or more of the techniques covered above.

Laboratory Outcomes

Upon completion of this laboratory course, students will be able to fabricate components with their own hands.

They will also get practical knowledge of the dimensional accuracies and dimensional tolerances possible with different manufacturing processes.

By assembling different components, they will be able to produce small devices of their interest.

- 1. Hajra Choudhury S.K., Hajra Choudhury A.K. and Nirjhar Roy S.K., "Elements of Workshop Technology", Vol. I 2008 and Vol. II 2010, Media promoters and publishers private limited, Mumbai.
- 2. Kalpakjian S. and Steven S. Schmid, "Manufacturing Engineering and Technology", 4th edition, Pearson Education India Edition, 2002.
- 3. Gowri P. Hariharan and A. Suresh Babu, "Manufacturing Technology I" Pearson Education, 2008.
- 4. Roy A. Lindberg, "Processes and Materials of Manufacture", 4th edition, Prentice Hall India, 1998.
- 5. Rao P.N., "Manufacturing Technology", Vol. I and Vol. II, Tata McGrawHill House, 2017.

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

Course Code: BS-M201	Category: Basic Science Course
Course Title: Mathematics – II A	Semester : Second (CSE &IT)
L-T-P : 3-1-0	Credit: 4
Pre-Requisites: High School Mathematics and BS-M101	

Module No.	Description of Topic	Lectures Hours
	Basic Probability: Probability spaces, conditional probability, independence;	
1	Discrete random variables, Independent random variables, the Multinomial	
	distribution, Poisson approximation to the Binomial distribution, infinite sequences	11
	of Bernoulli trials, sums of independent random variables; Expectation of Discrete	
	Random Variables, Moments, Variance of a sum, Correlation coefficient,	
	Chebyshev's Inequality.	
	Continuous Probability Distributions:	
2	Continuous random variables and their properties, Distribution functions and	4
_	densities, Normal, Exponential and Gamma densities.	
	Bivariate Distributions:	_
3	Bivariate distributions and their properties, distribution of sums and quotients,	5
J	Conditional densities, Bayes' rule.	
Basic Statistics:		
4	Measures of Central tendency, Moments, Skewness and Kurtosis, Probability	8
•	distributions: Binomial, Poisson and Normal and evaluation of statistical	
	parameters for these three distributions, Correlation and regression - Rank	
	correlation.	
	Applied Statistics:	
5	Curve fitting by the method of least squares- fitting of straight lines, second degree	8
J	parabolas and more general curves. Test of significance: Large sample test for	
	single proportion, difference of proportions, single mean, difference of means, and	
	difference of standard deviations.	
6	Small samples:	
	Test for single mean, difference of means and correlation coefficients, test for ratio	4
	of variances - Chi-square test for goodness of fit and independence of attributes.	

Course Outcomes:

The students will be able to:

Learn the ideas of probability and random variables, various discrete and continuous probability distributions with their properties and their applications in physical and engineering environment.

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

Understand the basic ideas of statistics with different characterisation of a univariate and bivariate data set.

Apply statistical tools for analysing data samples and drawing inference on a given data set.

- 1. Reena Garg, Chandrika Prasad, Advanced Engineering Mathematics, Khanna Publishers.
- 2. Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons
- 3. S. Ross, A First Course in Probability, Pearson Education India
- 4. W. Feller, An Introduction to Probability Theory and its Applications, Vol. 1, Wiley.
- 5. John E. Freund, Ronald E. Walpole, Mathematical Statistics, Prentice Hall.
- 6. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers.
- 7. N.G. Das, Statistical Methods (Combined Volume), Tata-McGraw Hill.

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology (Applicable from the academic session 2018-2019)

Course Code: BS-M202

Category: Basic Science Course

Course Title: Mathematics – II B

Semester: Second (All stream except CSE & IT)

L-T-P: 3-1-0

Credit: 4

Pre-Requisites: High School Mathematics and BS-M102

Multivariate Calculus (Integration): Multiple Integration: Double integrals (Cartesian), change of order of integration in double integrals, change of variables (Cartesian to Polar), Applications: Areas and volumes, Center of mass and Gravity (constant and variable densities); Triple integrals (Cartesian), Orthogonal curvilinear coordinates, Simple applications involving cubes, sphere and rectangular parallelepipeds; Scalar line integrals, vector line integrals, scalar surface integrals, vector surface integrals. Theorems of Green, Gauss and Stokes. First order ordinary differential equations: Exact, linear and Bernoulli's equations, Equations not of first degree: equations solvable for p, equations solvable for y, equations solvable for x and Clairaut's type. Ordinary differential equations of higher orders: Second order linear differential equations with variable coefficients, method of variation of parameters, Cauchy-Euler equation; Power series solutions; Legendre polynomials, Bessel functions of the first kind and their properties. Complex Variable — Differentiation Differentiation of complex functions, Cauchy-Riemann equations, Analytic functions, Harmonic functions, determination of harmonic conjugate, elementary analytic functions (exponential, trigonometric, logarithmic) and their properties; Conformal mappings, Mobius transformations and their properties. Complex Variable — Integration Contour integrals, Cauchy-Goursat theorem (without proof), Cauchy integral formula (without proof), Liouville's theorem and Maximum-Modulus theorem (without proof); Taylor's series, Zeros of analytic functions, Singularities, Laurent's series; Residues, Cauchy residue theorem (without proof), Evaluation of definite integral involving sine and cosine, Evaluation of certain improper integrals	Lectures Hours
in double integrals, change of variables (Cartesian to Polar), Applications: Areas and volumes, Center of mass and Gravity (constant and variable densities); Triple integrals (Cartesian), Orthogonal curvilinear coordinates, Simple applications involving cubes, sphere and rectangular parallelepipeds; Scalar line integrals, vector line integrals, scalar surface integrals, vector surface integrals, Theorems of Green, Gauss and Stokes. First order ordinary differential equations: Exact, linear and Bernoulli's equations, Equations not of first degree: equations solvable for p, equations solvable for y, equations solvable for x and Clairaut's type. Ordinary differential equations of higher orders: Second order linear differential equations with constant coefficients, Use of Doperators, Second order linear differential equations with variable coefficients, method of variation of parameters, Cauchy-Euler equation; Power series solutions; Legendre polynomials, Bessel functions of the first kind and their properties. Complex Variable – Differentiation Differentiation of complex functions, Cauchy-Riemann equations, Analytic functions, Harmonic functions, determination of harmonic conjugate, elementary analytic functions (exponential, trigonometric, logarithmic) and their properties; Conformal mappings, Mobius transformations and their properties. Complex Variable – Integration Contour integrals, Cauchy-Goursat theorem (without proof), Cauchy integral formula (without proof), Liouville's theorem and Maximum-Modulus theorem (without proof); Taylor's series, Zeros of analytic functions, Singularities, Laurent's series; Residues, Cauchy residue theorem (without proof), Evaluation of	
in double integrals, change of variables (Cartesian to Polar), Applications: Areas and volumes, Center of mass and Gravity (constant and variable densities); Triple integrals (Cartesian), Orthogonal curvilinear coordinates, Simple applications involving cubes, sphere and rectangular parallelepipeds; Scalar line integrals, vector line integrals, scalar surface integrals, vector surface integrals, Theorems of Green, Gauss and Stokes. First order ordinary differential equations: Exact, linear and Bernoulli's equations, Equations not of first degree: equations solvable for p, equations solvable for y, equations solvable for x and Clairaut's type. Ordinary differential equations of higher orders: Second order linear differential equations with constant coefficients, Use of Doperators, Second order linear differential equations with variable coefficients, method of variation of parameters, Cauchy-Euler equation; Power series solutions; Legendre polynomials, Bessel functions of the first kind and their properties. Complex Variable – Differentiation Differentiation of complex functions, Cauchy-Riemann equations, Analytic functions, Harmonic functions, determination of harmonic conjugate, elementary analytic functions (exponential, trigonometric, logarithmic) and their properties; Conformal mappings, Mobius transformations and their properties. Complex Variable – Integration Contour integrals, Cauchy-Goursat theorem (without proof), Cauchy integral formula (without proof), Liouville's theorem and Maximum-Modulus theorem (without proof); Taylor's series, Zeros of analytic functions, Singularities, Laurent's series; Residues, Cauchy residue theorem (without proof), Evaluation of	11
integrals (Cartesian), Orthogonal curvilinear coordinates, Simple applications involving cubes, sphere and rectangular parallelepipeds; Scalar line integrals, vector line integrals, scalar surface integrals, vector surface integrals, Theorems of Green, Gauss and Stokes. First order ordinary differential equations: Exact, linear and Bernoulli's equations, Equations not of first degree: equations solvable for p, equations solvable for y, equations solvable for x and Clairaut's type. Ordinary differential equations of higher orders: Second order linear differential equations with constant coefficients, Use of Doperators, Second order linear differential equations with variable coefficients, method of variation of parameters, Cauchy-Euler equation; Power series solutions; Legendre polynomials, Bessel functions of the first kind and their properties. Complex Variable – Differentiation Differentiation of complex functions, Cauchy-Riemann equations, Analytic functions, Harmonic functions, determination of harmonic conjugate, elementary analytic functions (exponential, trigonometric, logarithmic) and their properties; Conformal mappings, Mobius transformations and their properties. Complex Variable – Integration Contour integrals, Cauchy-Goursat theorem (without proof), Cauchy integral formula (without proof), Liouville's theorem and Maximum-Modulus theorem (without proof); Taylor's series, Zeros of analytic functions, Singularities, Laurent's series; Residues, Cauchy residue theorem (without proof), Evaluation of	11
involving cubes, sphere and rectangular parallelepipeds; Scalar line integrals, vector line integrals, scalar surface integrals, vector surface integrals, Theorems of Green, Gauss and Stokes. First order ordinary differential equations: Exact, linear and Bernoulli's equations, Equations not of first degree: equations solvable for p, equations solvable for x and Clairaut's type. Ordinary differential equations of higher orders: Second order linear differential equations with constant coefficients, Use of Doperators, Second order linear differential equations with variable coefficients, method of variation of parameters, Cauchy-Euler equation; Power series solutions; Legendre polynomials, Bessel functions of the first kind and their properties. Complex Variable – Differentiation Differentiation of complex functions, Cauchy-Riemann equations, Analytic functions, Harmonic functions, determination of harmonic conjugate, elementary analytic functions (exponential, trigonometric, logarithmic) and their properties; Conformal mappings, Mobius transformations and their properties. Complex Variable – Integration Contour integrals, Cauchy-Goursat theorem (without proof), Cauchy integral formula (without proof), Liouville's theorem and Maximum-Modulus theorem (without proof); Taylor's series, Zeros of analytic functions, Singularities, Laurent's series; Residues, Cauchy residue theorem (without proof), Evaluation of	
vector line integrals, scalar surface integrals, vector surface integrals, Theorems of Green, Gauss and Stokes. First order ordinary differential equations: Exact, linear and Bernoulli's equations, Equations not of first degree: equations solvable for p, equations solvable for y, equations solvable for x and Clairaut's type. Ordinary differential equations of higher orders: Second order linear differential equations with constant coefficients, Use of Doperators, Second order linear differential equations with variable coefficients, method of variation of parameters, Cauchy-Euler equation; Power series solutions; Legendre polynomials, Bessel functions of the first kind and their properties. Complex Variable – Differentiation Differentiation of complex functions, Cauchy-Riemann equations, Analytic functions, Harmonic functions, determination of harmonic conjugate, elementary analytic functions (exponential, trigonometric, logarithmic) and their properties; Conformal mappings, Mobius transformations and their properties. Complex Variable – Integration Contour integrals, Cauchy-Goursat theorem (without proof), Cauchy integral formula (without proof), Liouville's theorem and Maximum-Modulus theorem (without proof); Taylor's series, Zeros of analytic functions, Singularities, Laurent's series; Residues, Cauchy residue theorem (without proof), Evaluation of	
Green, Gauss and Stokes. First order ordinary differential equations: Exact, linear and Bernoulli's equations, Equations not of first degree: equations solvable for p, equations solvable for y, equations solvable for x and Clairaut's type. Ordinary differential equations of higher orders: Second order linear differential equations with constant coefficients, Use of Doperators, Second order linear differential equations with variable coefficients, method of variation of parameters, Cauchy-Euler equation; Power series solutions; Legendre polynomials, Bessel functions of the first kind and their properties. Complex Variable – Differentiation Differentiation of complex functions, Cauchy-Riemann equations, Analytic functions, Harmonic functions, determination of harmonic conjugate, elementary analytic functions (exponential, trigonometric, logarithmic) and their properties; Conformal mappings, Mobius transformations and their properties. Complex Variable – Integration Contour integrals, Cauchy-Goursat theorem (without proof), Cauchy integral formula (without proof), Liouville's theorem and Maximum-Modulus theorem (without proof); Taylor's series, Zeros of analytic functions, Singularities, Laurent's series; Residues, Cauchy residue theorem (without proof), Evaluation of	
First order ordinary differential equations: Exact, linear and Bernoulli's equations, Equations not of first degree: equations solvable for p, equations solvable for y, equations solvable for x and Clairaut's type. Ordinary differential equations of higher orders: Second order linear differential equations with constant coefficients, Use of Doperators, Second order linear differential equations with variable coefficients, method of variation of parameters, Cauchy-Euler equation; Power series solutions; Legendre polynomials, Bessel functions of the first kind and their properties. Complex Variable – Differentiation Differentiation of complex functions, Cauchy-Riemann equations, Analytic functions, Harmonic functions, determination of harmonic conjugate, elementary analytic functions (exponential, trigonometric, logarithmic) and their properties; Conformal mappings, Mobius transformations and their properties. Complex Variable – Integration Contour integrals, Cauchy-Goursat theorem (without proof), Cauchy integral formula (without proof), Liouville's theorem and Maximum-Modulus theorem (without proof); Taylor's series, Zeros of analytic functions, Singularities, Laurent's series; Residues, Cauchy residue theorem (without proof), Evaluation of	
Exact, linear and Bernoulli's equations, Equations not of first degree: equations solvable for p, equations solvable for y, equations solvable for x and Clairaut's type. **Ordinary differential equations of higher orders:* Second order linear differential equations with constant coefficients, Use of Doperators, Second order linear differential equations with variable coefficients, method of variation of parameters, Cauchy-Euler equation; Power series solutions; Legendre polynomials, Bessel functions of the first kind and their properties. **Complex Variable – Differentiation** Differentiation of complex functions, Cauchy-Riemann equations, Analytic functions, Harmonic functions, determination of harmonic conjugate, elementary analytic functions (exponential, trigonometric, logarithmic) and their properties; Conformal mappings, Mobius transformations and their properties. **Complex Variable – Integration** Contour integrals, Cauchy-Goursat theorem (without proof), Cauchy integral formula (without proof), Liouville's theorem and Maximum-Modulus theorem (without proof); Taylor's series, Zeros of analytic functions, Singularities, Laurent's series; Residues, Cauchy residue theorem (without proof), Evaluation of	
solvable for p, equations solvable for y, equations solvable for x and Clairaut's type. **Ordinary differential equations of higher orders:* Second order linear differential equations with constant coefficients, Use of Doperators, Second order linear differential equations with variable coefficients, method of variation of parameters, Cauchy-Euler equation; Power series solutions; Legendre polynomials, Bessel functions of the first kind and their properties. **Complex Variable - Differentiation** Differentiation of complex functions, Cauchy-Riemann equations, Analytic functions, Harmonic functions, determination of harmonic conjugate, elementary analytic functions (exponential, trigonometric, logarithmic) and their properties; Conformal mappings, Mobius transformations and their properties. **Complex Variable - Integration** Contour integrals, Cauchy-Goursat theorem (without proof), Cauchy integral formula (without proof), Liouville's theorem and Maximum-Modulus theorem (without proof); Taylor's series, Zeros of analytic functions, Singularities, Laurent's series; Residues, Cauchy residue theorem (without proof), Evaluation of	
solvable for p, equations solvable for y, equations solvable for x and Clairaut's type. **Ordinary differential equations of higher orders:* Second order linear differential equations with constant coefficients, Use of Doperators, Second order linear differential equations with variable coefficients, method of variation of parameters, Cauchy-Euler equation; Power series solutions; Legendre polynomials, Bessel functions of the first kind and their properties. **Complex Variable – Differentiation** Differentiation of complex functions, Cauchy-Riemann equations, Analytic functions, Harmonic functions, determination of harmonic conjugate, elementary analytic functions (exponential, trigonometric, logarithmic) and their properties; Conformal mappings, Mobius transformations and their properties. **Complex Variable – Integration** Contour integrals, Cauchy-Goursat theorem (without proof), Cauchy integral formula (without proof), Liouville's theorem and Maximum-Modulus theorem (without proof); Taylor's series, Zeros of analytic functions, Singularities, Laurent's series; Residues, Cauchy residue theorem (without proof), Evaluation of	5
Ordinary differential equations of higher orders: Second order linear differential equations with constant coefficients, Use of Doperators, Second order linear differential equations with variable coefficients, method of variation of parameters, Cauchy-Euler equation; Power series solutions; Legendre polynomials, Bessel functions of the first kind and their properties. Complex Variable – Differentiation Differentiation of complex functions, Cauchy-Riemann equations, Analytic functions, Harmonic functions, determination of harmonic conjugate, elementary analytic functions (exponential, trigonometric, logarithmic) and their properties; Conformal mappings, Mobius transformations and their properties. Complex Variable – Integration Contour integrals, Cauchy-Goursat theorem (without proof), Cauchy integral formula (without proof), Liouville's theorem and Maximum-Modulus theorem (without proof); Taylor's series, Zeros of analytic functions, Singularities, Laurent's series; Residues, Cauchy residue theorem (without proof), Evaluation of	3
Second order linear differential equations with constant coefficients, Use of Doperators, Second order linear differential equations with variable coefficients, method of variation of parameters, Cauchy-Euler equation; Power series solutions; Legendre polynomials, Bessel functions of the first kind and their properties. **Complex Variable – Differentiation** Differentiation of complex functions, Cauchy-Riemann equations, Analytic functions, Harmonic functions, determination of harmonic conjugate, elementary analytic functions (exponential, trigonometric, logarithmic) and their properties; Conformal mappings, Mobius transformations and their properties. **Complex Variable – Integration** Contour integrals, Cauchy-Goursat theorem (without proof), Cauchy integral formula (without proof), Liouville's theorem and Maximum-Modulus theorem (without proof); Taylor's series, Zeros of analytic functions, Singularities, Laurent's series; Residues, Cauchy residue theorem (without proof), Evaluation of	
operators, Second order linear differential equations with variable coefficients, method of variation of parameters, Cauchy-Euler equation; Power series solutions; Legendre polynomials, Bessel functions of the first kind and their properties. **Complex Variable – Differentiation** Differentiation of complex functions, Cauchy-Riemann equations, Analytic functions, Harmonic functions, determination of harmonic conjugate, elementary analytic functions (exponential, trigonometric, logarithmic) and their properties; Conformal mappings, Mobius transformations and their properties. **Complex Variable – Integration** Contour integrals, Cauchy-Goursat theorem (without proof), Cauchy integral formula (without proof), Liouville's theorem and Maximum-Modulus theorem (without proof); Taylor's series, Zeros of analytic functions, Singularities, Laurent's series; Residues, Cauchy residue theorem (without proof), Evaluation of	
operators, Second order linear differential equations with variable coefficients, method of variation of parameters, Cauchy-Euler equation; Power series solutions; Legendre polynomials, Bessel functions of the first kind and their properties. **Complex Variable – Differentiation** Differentiation of complex functions, Cauchy-Riemann equations, Analytic functions, Harmonic functions, determination of harmonic conjugate, elementary analytic functions (exponential, trigonometric, logarithmic) and their properties; Conformal mappings, Mobius transformations and their properties. **Complex Variable – Integration** Contour integrals, Cauchy-Goursat theorem (without proof), Cauchy integral formula (without proof), Liouville's theorem and Maximum-Modulus theorem (without proof); Taylor's series, Zeros of analytic functions, Singularities, Laurent's series; Residues, Cauchy residue theorem (without proof), Evaluation of	
Legendre polynomials, Bessel functions of the first kind and their properties. **Complex Variable – Differentiation** Differentiation of complex functions, Cauchy-Riemann equations, Analytic functions, Harmonic functions, determination of harmonic conjugate, elementary analytic functions (exponential, trigonometric, logarithmic) and their properties; Conformal mappings, Mobius transformations and their properties. **Complex Variable – Integration** Contour integrals, Cauchy-Goursat theorem (without proof), Cauchy integral formula (without proof), Liouville's theorem and Maximum-Modulus theorem (without proof); Taylor's series, Zeros of analytic functions, Singularities, Laurent's series; Residues, Cauchy residue theorem (without proof), Evaluation of	9
Complex Variable – Differentiation Differentiation of complex functions, Cauchy-Riemann equations, Analytic functions, Harmonic functions, determination of harmonic conjugate, elementary analytic functions (exponential, trigonometric, logarithmic) and their properties; Conformal mappings, Mobius transformations and their properties. Complex Variable – Integration Contour integrals, Cauchy-Goursat theorem (without proof), Cauchy integral formula (without proof), Liouville's theorem and Maximum-Modulus theorem (without proof); Taylor's series, Zeros of analytic functions, Singularities, Laurent's series; Residues, Cauchy residue theorem (without proof), Evaluation of	
Differentiation of complex functions, Cauchy-Riemann equations, Analytic functions, Harmonic functions, determination of harmonic conjugate, elementary analytic functions (exponential, trigonometric, logarithmic) and their properties; Conformal mappings, Mobius transformations and their properties. **Complex Variable – Integration** Contour integrals, Cauchy-Goursat theorem (without proof), Cauchy integral formula (without proof), Liouville's theorem and Maximum-Modulus theorem (without proof); Taylor's series, Zeros of analytic functions, Singularities, Laurent's series; Residues, Cauchy residue theorem (without proof), Evaluation of	
functions, Harmonic functions, determination of harmonic conjugate, elementary analytic functions (exponential, trigonometric, logarithmic) and their properties; Conformal mappings, Mobius transformations and their properties. **Complex Variable – Integration** Contour integrals, Cauchy-Goursat theorem (without proof), Cauchy integral formula (without proof), Liouville's theorem and Maximum-Modulus theorem (without proof); Taylor's series, Zeros of analytic functions, Singularities, Laurent's series; Residues, Cauchy residue theorem (without proof), Evaluation of	
functions, Harmonic functions, determination of harmonic conjugate, elementary analytic functions (exponential, trigonometric, logarithmic) and their properties; Conformal mappings, Mobius transformations and their properties. **Complex Variable – Integration** Contour integrals, Cauchy-Goursat theorem (without proof), Cauchy integral formula (without proof), Liouville's theorem and Maximum-Modulus theorem (without proof); Taylor's series, Zeros of analytic functions, Singularities, Laurent's series; Residues, Cauchy residue theorem (without proof), Evaluation of	
Conformal mappings, Mobius transformations and their properties. Complex Variable – Integration Contour integrals, Cauchy-Goursat theorem (without proof), Cauchy integral formula (without proof), Liouville's theorem and Maximum-Modulus theorem (without proof); Taylor's series, Zeros of analytic functions, Singularities, Laurent's series; Residues, Cauchy residue theorem (without proof), Evaluation of	6
Complex Variable – Integration Contour integrals, Cauchy-Goursat theorem (without proof), Cauchy integral formula (without proof), Liouville's theorem and Maximum-Modulus theorem (without proof); Taylor's series, Zeros of analytic functions, Singularities, Laurent's series; Residues, Cauchy residue theorem (without proof), Evaluation of	
Contour integrals, Cauchy-Goursat theorem (without proof), Cauchy integral formula (without proof), Liouville's theorem and Maximum-Modulus theorem (without proof); Taylor's series, Zeros of analytic functions, Singularities, Laurent's series; Residues, Cauchy residue theorem (without proof), Evaluation of	
formula (without proof), Liouville's theorem and Maximum-Modulus theorem (without proof); Taylor's series, Zeros of analytic functions, Singularities, Laurent's series; Residues, Cauchy residue theorem (without proof), Evaluation of	
formula (without proof), Liouville's theorem and Maximum-Modulus theorem (without proof); Taylor's series, Zeros of analytic functions, Singularities, Laurent's series; Residues, Cauchy residue theorem (without proof), Evaluation of	
Laurent's series; Residues, Cauchy residue theorem (without proof), Evaluation of	9
definite integral involving sine and cosine Evaluation of certain improper integrals	
definite integral involving sine and cosine, Evaluation of certain improper integrals	
using the Bromwich contour.	

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

Course Outcomes:

The students will be able to:

Learn the methods for evaluating multiple integrals and their applications to different physical problems.

Understand different techniques to solve first and second order ordinary differential equations with its formulation to address the modelling of systems and problems of engineering sciences.

Learn different tools of differentiation and integration of functions of a complex variable that are used with various other techniques for solving engineering problems.

Apply different types of transformations between two 2- dimensional planes for analysis of physical or engineering problems.

- 1. Reena Garg, Chandrika Prasad, Advanced Engineering Mathematics, Khanna Publishers.
- 2. Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons.
- 3. Michael Greenberg, Advanced Engineering Mathematics, Pearson.
- 4. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers.
- 5. Kanti B. Dutta, Mathematical Methods of Science and Engineering, Cenage Learning.
- 6. Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi.
- 7. E. L. Ince, Ordinary Differential Equations, Dover Publications.
- 8. J. W. Brown and R. V. Churchill, Complex Variables and Applications, Mc-Graw Hill.

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

Course Code : ES-CS201	Category: Engineering Science Courses
Course Title: Programming for Problem Solving	Semester : Second
L-T-P : 3-0-0	Credit:3
Pre-Requisites:	

Detailed contents

Unit 1: Introduction to Programming (4 lectures)

Introduction to components of a computer system (disks, memory, processor, where a program is stored and executed, operating system, compilers etc.) - (1 lecture).

Idea of Algorithm: steps to solve logical and numerical problems. Representation of Algorithm:

Flowchart/Pseudocode with examples. (1 lecture)

From algorithms to programs; source code, variables (with data types) variables and memory locations, Syntax and Logical Errors in compilation, object and executable code- (2 lectures)

Unit 2: Arithmetic expressions and precedence (2 lectures)

Unit 3: Conditional Branching and Loops (6 lectures)

Writing and evaluation of conditionals and consequent branching (3 lectures)

Iteration and loops (3 lectures)

Unit 4: Arrays (6 lectures)

Arrays (1-D, 2-D), Character arrays and Strings

Unit 5: Basic Algorithms (6 lectures)

Searching, Basic Sorting Algorithms (Bubble, Insertion and Selection), Finding roots of equations, notion of order of complexity through example programs (no formal definition required)

Unit 6: Function (5 lectures)

Functions (including using built in libraries), Parameter passing in functions, call by value, Passing arrays to functions: idea of call by reference

Unit 7: Recursion (4 -5 lectures)

Recursion, as a different way of solving problems. Example programs, such as Finding Factorial, Fibonacci series, Ackerman function etc. Quick sort or Merge sort.

Unit 8: Structure (4 lectures)

Structures, Defining structures and Array of Structures

Unit 9: Pointers (2 lectures)

Idea of pointers, Defining pointers, Use of Pointers in self-referential structures, notion of linked list (no implementation)

Unit 10: File handling (only if time is available, otherwise should be done as part of the lab)

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

Course Outcomes

The student will learn

To formulate simple algorithms for arithmetic and logical problems.

To translate the algorithms to programs (in C language).

To test and execute the programs and correct syntax and logical errors.

To implement conditional branching, iteration and recursion.

To decompose a problem into functions and synthesize a complete program using divide and conquer approach.

To use arrays, pointers and structures to formulate algorithms and programs.

To apply programming to solve matrix addition and multiplication problems and searching and sorting problems.

To apply programming to solve simple numerical method problems, namely rot finding of function, differentiation of function and simple integration.

- 1. R. S. Salaria, Computer Concepts and Programming in C, Khanna Publishers
- 2. Byron Gottfried, Schaum's Outline of Programming with C, McGraw-Hill
- 3. E. Balaguruswamy, Programming in ANSI C, Tata McGraw-Hill
- 4. Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice Hall of India

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

Category: Engineering Science Courses		
Semester : Second		
Credit:2		

The laboratory should be preceded or followed by a tutorial to explain the approach or algorithm to be implemented for the problem given.

Tutorial 1: Problem solving using computers:

Lab1: Familiarization with programming environment

Tutorial 2: Variable types and type conversions:

Lab 2: Simple computational problems using arithmetic expressions

Tutorial 3: Branching and logical expressions:

Lab 3: Problems involving if-then-else structures

Tutorial 4: Loops, while and for loops:

Lab 4: Iterative problems e.g., sum of series

Tutorial 5: 1D Arrays: searching, sorting:

Lab 5: 1D Array manipulation

Tutorial 6: 2D arrays and Strings

Lab 6: Matrix problems, String operations

Tutorial 7: Functions, call by value:

Lab 7: Simple functions

Tutorial 8 &9: Numerical methods (Root finding, numerical differentiation, numerical integration):

Lab 8 and 9: Programming for solving Numerical methods problems

Tutorial 10: Recursion, structure of recursive calls

Lab 10: Recursive functions

Tutorial 11: Pointers, structures and dynamic memory allocation

Lab 11: Pointers and structures

Tutorial 12: File handling:

Lab 12: File operations

Laboratory Outcomes

To formulate the algorithms for simple problems

To translate given algorithms to a working and correct program

To be able to correct syntax errors as reported by the compilers

To be able to identify and correct logical errors encountered at run time

To be able to write iterative as well as recursive programs

To be able to represent data in arrays, strings and structures and manipulate them through a program

To be able to declare pointers of different types and use them in defining self-referential structures.

To be able to create, read and write to and from simple text files.

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

Course Code : HM-HU201	Category: Humanities and Social Sciences including Management courses
Course Title : English	Semester : Second
L-T-P : 2-0-0	Credit:2
Pre-Requisites:	

Detailed contents

1. Vocabulary Building

- 1.1 The concept of Word Formation: Compounding, Backformation, Clipping, Blending.
- 1.2 Root words from foreign languages and their use in English
- 1.3 Acquaintance with prefixes and suffixes from foreign languages in English to form derivatives.
- 1.4 Synonyms, antonyms, and standard abbreviations: Acronyms

2. Basic Writing Skills

- 2.1 Sentence Structures & Types: Simple, Compound, Complex
- 2.2 Use of phrases and clauses in sentences: Transformation of sentences, active, passive, narration
- 2.3 Importance of proper punctuation
- 2.4 Creating coherence: Arranging paragraphs & Sentences in logical order
- 2.5 Creating Cohesion: Organizing principles of paragraphs in documents
- 2.6 Techniques for writing precisely

3. Identifying Common Errors in Writing

- 3.1 Subject-verb agreement
- 3.2 Noun-pronoun agreement
- 3.3 Misplaced modifiers
- 3.4 Articles
- 3.5 Prepositions
- 3.6 Redundancies
- 3.7 Clichés

4. Nature and Style of sensible Writing

- 4.1 Describing
- 4.2 Defining
- 4.3 Classifying
- 4.4 Providing examples or evidence
- 4.5 Writing introduction and conclusion

5. Writing Practices

- 5.1 Comprehension
- 5.2 Précis Writing
- 5.3 Essay Writing
- 5.4 Business Letter, Cover Letter & CV; E-mail

Addendum

Some examples of English words with foreign roots

Greek Root/Affix	Examples
Anti	Antisocial, antiseptic

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology (Applicable from the academic session 2018-2019)

, FF	e deddeffile Session 2010-2017)
Auto	Automatic, autograph
Anthropos	Anthropology, philanthropy
Bio	Biography
Chronos	Time
Di	Dilemma
Bio	Biology
Biblio	Bibliography
Chron	Chronology
Cracy	Contradiction
Geo	Geology
Hyper	Hyperactive
Mania	Kleptomania
Mega	Megaserial
Eu	Eulogy, euphoria
Geo	Geology
Graph	autograph, photograph
Hetero	Heterogeneous
Hyper	Hyperactive
Нуро	hypodermic, hypoglycemia
Macro	Macrocosm
Mega	megalomania
Micro	microcosm

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology (Applicable from the academic session 2018-2019)

academic session 2018-2019)			
Monarch			
Panorama			
Pathetic			
Hydrophobia			
Pseudopodia			
oolyglot			
Telephone			
Theology, theist			
Examples			
Audible			
Beneficial			
abbreviate, brief			
Circulate			
Contradict			
Credible			
Diction			
- eminine			
Internet, interval			
Magnificient			
Malnutrition			
multinational			
Novel			
Multiple, multiplex			
. ,			

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

	le academic session 2016-2019)
Pre	Previous, predicate
Re	Redo, rewind
Scrib	Carintura
SCHO	Scripture
Spect	Spectator
_	
Trans	Transport
Trails	Transport
Uni	Unity
Omni	Omnipotent
0	ommpotent
Carrai	Camalainala
Semi	Semicircle
Sub	Subway
	,
somnus	Insomnia,
Super	Superman
Super	Superman
Sym	Sympathy
scribe	Describe, scribble(write
	illegibly), inscribe
T	
Trans	Transform
Un	Unnecessary
	,
Uni	Universal
OIII	Ulliversal

Learning Resources:

- (i) Kulbushan Kumar, R S Salaria, Effective Communication Skills, Khanna Publishing House, Delhi.
- (ii) Practical English Usage. Michael Swan. OUP. 1995.
- (iii) Remedial English Grammar. F.T. Wood. Macmillan.2007
- (iv) On Writing Well. William Zinsser. Harper Resource Book. 2001
- (v) Study Writing. Liz Hamp-Lyons and Ben Heasly. Cambridge University Press. 2006.
- (vi) Communication Skills. Sanjay Kumar and PushpLata. Oxford University Press. 2011.
- (vii) Exercises in Spoken English. Parts. I-III. CIEFL, Hyderabad. Oxford University Press
- (viii) Universal English Prof. Prasad Kataria Publications, 2019.
- (ix) "Communication Skills for Professionals"-Nira Konar, Prentice Hall of India 2nd edition, New Delhi, 2011
- (x) Gajendra Singh Chauhan, Smita Kashiramka and L. Thimmesha. Functional English. Cengage, 2019.

Course Outcomes

The student will acquire basic proficiency in English including reading and listening comprehension, writing and speaking skills.

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

Course Code : HM-HU291	Category: Humanities and Social Sciences including Management courses
Course Title : Language Laboratory	Semester : Second
L-T-P : 0-0-2	Credit:1
Pre-Requisites:	

1)	Honing 'Listening Skill' and its sub skills through Language Lab Audio device;	3P		
2)	Honing 'Speaking Skill' and its sub skills 2			
3)	Helping them master Linguistic/Paralinguistic features (Pronunciation/Phonetics/			
	Voice modulation/ Stress/ Intonation/ Pitch &Accent) of connected speech	2P		
4)	Honing 'Conversation Skill' using Language Lab Audio -Visual input;			
	Conversational Practice Sessions (Face to Face / via Telephone, Mobile phone &			
	Role Play Mode)	2P		
5)	Introducing 'Group Discussion' through audio -Visual input and acquainting them			
	with key strategies for success	2P		
6)	G D Practice Sessions for helping them internalize basic Principles			
	(turn- taking, creative intervention, by using correct body language, courtesies &			
	other soft skills) of GD	4P		
7)	Honing 'Reading Skills' and its sub skills using Visual / Graphics/			
	Diagrams /Chart Display/Technical/Non Technical Passages			
	Learning Global / Contextual / Inferential Comprehension;	2P		
8)	Honing 'Writing Skill' and its sub skills by using			
	Language Lab Audio -Visual input; Practice Sessions	2P		

Course Outcomes

• The student will acquire basic proficiency in English including reading and listening comprehension, writing and speaking skills.

Annexure-I

MOOCs for B. Tech Honours

Maulana Abul Kalam Azad University of Technology, West Bengal

(Formerly West Bengal University of Technology)

BF- 142, Sector-I, Salt Lake, Kolkata- 700064, India

Notice

1st May, 2018

MOOCs for B.Tech Honours

(Applicable from the session 2018-2019)

Preamble

All India Council for Technical Education (AICTE) has introduced Model Curriculum for Bachelor of Technology programme with 160 credits in the entire programme of 4 years, and additional 20 credits will be required to be done for the degree of Bachelor of Technology with Honours. These additional 20 credits will have to be acquired with online courses (MOOCs) as per AICTE. So students will have to complete additional 20 credits through MOOCs within 4 years of time. This creates an excellent opportunity for students to acquire the necessary skill set for employability through massive online courses where the rare expertise of world famous experts from academics and industry are available. Maulana Abul Kalam Azad University of Technology, West Bengal (MAKAUT, WB) has thus decided to introduce AICTE model curriculum for its B.Tech Programmes and suggest baskets for MOOCs available year wise for the four-year long B.Tech programme from the sessions 2018-2019. The basket for MOOCs will be a dynamic one, as courses keep on updating with time. Few essential skill sets required for employability are also identified year wise by MAKAUT, WB. For MOOCs platforms where examination or assessment is absent (like SWAYAM) or where certification is costly (like Coursera or edX), faculty members of the Institutes are to audit the courses and prepare the examination question papers, for the courses undertaken by the students of respective Institutes, so that MAKAUT, WB can conduct examination for the course. The total of 20 credits that is required to be attained for B.Tech Honours degree are distributed over four years in the following way:

For first year : 8 credits
For second year : 4 credits
For third year : 4 credits
For fourth year : 4 credits

A student of first year has to cover courses from at least three skills:

- 1. Computer Programing with Python / R
- 2. Soft skill
- 3. Ethics

Courses are * marked in the above areas

If a student is unable to cover the credits assigned for the first year, he/she can do these courses in either of the subsequent years, but he/she has to choose the courses from the basket of MOOCs announced by MAKAUT,WB from time to time. The same rule will be applicable for the other years of the programme.

The basket for MOOCs for the 1st year B. Tech for the session 2018-2019 are made available herewith.

By order.

MOOCs for First Year, Engineering and Technology

Sl. No	Course	Provider	Duration	Credits	Name of University / Institution
1.	Presentation Skills: Designing Presentation Slides	Coursera *	4 weeks	1	Tomsk State University
2.	Effective Problem-Solving and Decision- Making	Coursera	4 weeks	1	University of California
3.	Communication in the 21st Century Workplace	Coursera *	4 weeks	1	University of California
4.	Psychology at Work	Coursera *	6 weeks	2	University of Western Australia
5.	Critical Thinking & Problem Solving	EdX *	3 weeks	3	Rochester Institute of Technology
6.	Successful Career Development	Coursera	7 weeks	2	University System of Georgia
7.	Working in Teams: A Practical Guide	edX	4 weeks	1	University of Queensland
8.	Communication theory: bridging academia and practice	Coursera	9 weeks	3	Higher School of Economics
9.	Speaking Effectively	NPTEL *	8 weeks	3	Indian Institute of Technology, Kharagpur
10.	Introduction to Philosophy	Coursera	5 weeks	1	University of Edinburgh
11.	Moralities of Everyday Life	Coursera	6 weeks	2	Yale University
12.	Introduction to Logic	Coursera *	10 weeks	3	Stanford University
13	Write Professional Emails in English	Coursera *	5 weeks	2	Georgia Institute of Technology
14	Technical Writing	Coursera	5 weeks	1	Moscow Institute of Physics and Technology
15	Learn to Program: The Fundamentals	Coursera	7 weeks	2	University of Toronto
16	The Science of Everyday Thinking	edX	12 weeks	4	University of Queensland
17	Introduction to Problem Solving and Programming	NPTEL	12 weeks	4	NPTEL
18	The Science of Well Being	Coursera	6 weeks	2	Yale University
19	Developing Soft Skills and Personality	NPTEL	8 weeks	3	
20	Programming Basics	edX	9 weeks	3	IIT Bombay
21	Introduction to Python: Absolute Beginner	EdX *	5 weeks	2	Microsoft
22	Inferential Statistics	Coursera *	7 weeks	2	University of Amsterdam
23	Linear Regression and Modelling	Coursera	4 weeks	1	Duke University
24	Foundation of Data Structures	edX	6 weeks	2	IIT Bombay
25	Introduction to Logic	NPTEL	12 weeks	4	NPTEL
26	Introduction to Probability and Data	Coursera *	5 weeks	1	Duke University
27	Ethics	NPTEL *	12 weeks	4	
28	Science, Technology and Society	NPTEL	12 weeks	4	
29	Creating Innovation	Coursera	6 weeks	2	Macquarie University
30	Ethical Leadership Through Giving Voice to Values	Coursera *	4 weeks	2	University of Virginia
31	Creativity, Innovation, and Change	Coursera *	6 weeks	2	Pennsylvania State University
32	Interpersonal Communication for Engineering Leaders	Coursera	4 weeks	1	Rice University

33	Learn to Program: The Fundamentals	Coursera *	7 weeks	3	University of Toronto
34	Introduction to Mathematical Thinking	Coursera *	9 weeks	3	Stanford University
35	The Science of Everyday Thinking	edX	12 weeks	4	University of Queensland
36	A Life of Happiness and Fulfillment	Coursera	6 weeeks	2	Indian School of Business
37	Model Thinking	Coursera	12 weeks	4	University of Michigan
38	Introduction to Philosophy: God,	edX	12 weeks	4	MIT
	Knowledge, and Consciousness	Cuzi	12 Weeks	•	
39	Soft skills	NPTEL *	12 Weeks	4	IIT Roorkee
40	Developing Soft Skills and Personality	NPTEL *	8 weeks	3	IIT Kanpur
41	Indian Fiction in English	NPTEL	12 Weeks	4	IIT Madras
42	Development of Sociology in India	NPTEL	4 Weeks	1	IIT Kanpur
43	Intellectual Property	NPTEL	12 Weeks	4	IIT Madras
44	Essential Statistics for Data Analysis using Excel	EdX *	Self Paced	3	Microsoft
45	Ethics and Law in Data and Analytics	edX	Self Paced	4	Microsoft
46	Climate Change Mitigation in Developing Countries	Coursera *	6 weeks	3	University of Cape town
47	Web Design for Everybody (Basics of Web Development and Coding) Specialization	Coursera	15weeks	4	University of Michigan
48	Ecology: Ecosystem Dynamics and Conservation	Coursera	5 weeks	1	American Museum of Natural History, Howard Hughes Medical Institute
49	Environmental Studies: A Global Perspective	EdX *	Self Paced	4	Curtin University
50	Introduction to Computer Science and Programming Using Python	edX *	Self Paced	4	MIT, USA
51	Statistics and R	edX *	Self Paced	4	Harvard University
52	Introduction to Programming in C	Coursera *	4 weeks	4	Duke University
53	Java Programming: Solving Problems with Software	Coursera	4 weeks	4	Duke University
54	Grammar and Punctuation	Coursera	4 weeks	1	University of California
55	How to Write an Essay	Coursera *	5 weeks	1	University of California, Berkeley
56	Conversational English Skills	EdX *	10 weeks	3	Tsinghua University
57	Advanced Writing	Coursera *	4 weeks	1	University of California, Irvine
58	8 Speak English Professionally: In Person, Coursera 5 wee Online & On the Phone *		5 weeks	1	Georgia Institute of Technology
59	English for Science, Technology, Engineering, and Mathematics		5 weeks	1	University of Pennsylvania
60	English Composition	edX	8 weeks	3	Arizona State University
61	Take Your English Communication Skills to the Next Level	Coursera *	4 weeks	1	Georgia Institute of Technology

Guidelines regarding Mandatory Induction Program for the new students

Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology)
BF- 142, Sector-I, Salt Lake, Kolkata- 700064, India

Date: 06.12.2017

Maulana Abul Kalam Azad University of Technology, West Bengal Guidelines regarding Induction Programme for the new students

(As per Model Curriculum for 1st Year UG degrees courses in Engineering & Technology, November 2017)

To be followed from the 2018-19 academic session

Preamble: Engineering education has evolved globally in a continuous manner to address the twin needs of industry and society. It is now an accepted fact that the institutions imparting technical education should aspire to create manpower who will possess strong technical knowledge and skill, have leadership qualities and be a team player, capable of coming up with innovative solutions and be alive to societal and community concerns.

The aim of the Induction Programme is to acclimatize the students to the environment of their engineering institution, give them a flavour of the exciting new world of education that they are entering, provide them with mentoring schemes, and make them aware of their neighbourhood, society and people. This will allow them to evolve as well rounded individuals.

The following schedule is laid down by the University to implement the three week long Induction Programme:

Week 1	1 st Half	Day 1	Overall introduction of the new students to the
,,, con 1	1 11411		Institution, its different Departments & Faculty
			Members
			Wellibers
	2 nd Half	Day 1	(a) Assignment of faculty mentors to the new
			students
			(b) Assessment and allotment for mentoring by senior students preferably from the second year
	2 hrs	Day 2, 3, 4, 5	Lectures by eminent personalities on different areas
			such as (a) Introduction to Engineering (b) Various
			topics of science and technology
			(c) Innovation and entrepreneurship
			(d) Creative and performing arts (e) Social issues
			(a) crown and perferming and (c) a countries
	2 hrs.	Day 2, 3, 4, 5	Participation in Games, Yoga, Meditation etc.
	2 hrs	Day 2, 3, 4, 5	Visit to the different Departments of the Institute
W 1 0 (A11	21		
Week 2 (All	2hrs		Scheduled class lectures as per time table.
Days)			
	2hrs		Students to be conducted through proficiency modules
			to be prepared by respective Colleges for ascertaining
			English skills & Computer knowledge of the students

			and to prepare a report on the same
	2hrs		Participation in Games, Sports, Yoga, Creative arts etc.
Week 3	2hrs		Scheduled class lectures as per time table
		Day 1	Visits to neighbourhood locations
		Day 2	Visits to natural spots in adjoining areas to understand the effect of nature on society
		Day 3	Visits to Science Museum / laboratories
		Day 4	
		Day 5	Visits to NGOs

Any other activity, as deemed fit by the Director/Principal of the affiliated Colleges, may be proposed and discussed with the Academic Coordinator of the University, by sending email to the following address: academics.makaut@gmail.com.

Note: 1) If necessary, networking may be established with NGOs to facilitate the different components and aspects of the Induction Programme.

Mandatory Additional Requirement for earning B. Tech Degree

Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology)
BF- 142, Sector-I, Salt Lake, Kolkata- 700064, India

Maulana Abul Kalam Azad University of Technology, West Bengal BF-142, Sector-I, Saltlake

Notice

Mandatory Additional Requirement for earning B.Tech Degree

Addressing the needs of the industry and the society: Globally, engineering education systems have continuously evolved, in order to address the needs of the industry and the society. It is becoming imperative that every University should create opportunities for the students to inculcate attributes, which are not restricted only to engineering knowledge and acumen. Industry needs professionals who can work successfully in teams, who have leadership qualities, who are alive to social and community needs and who can bring innovation and creativity to their work and who are also digitally proficient. Hence, in order to prepare its students to match these multiple requirements, MAKAUT, WB has created a unique mechanism of awarding 100 Activity Points over and above the academic grades. It is planned that the students at MAKAUT, WB will be able to reap benefits from these activities at their own pace and comfort. It is expected that by the time MAKAUT, WB's students reach their Final Year, they would have developed themselves so well both through their studies in the respective technological field and through their active participation in the co-curricular and extra-curricular activities as also through SAWYAM based learning activities that they would be well-prepared for contributing to building the India and the world of their dreams.

The additional requirement applies to: Every student, who is admitted to the 4 years B.Tech program from the academic year 2018-19 onwards, is required to earn minimum 100 Activity Points in addition to the required academic grades, for getting MAKAUT,WB's B.Tech degree. Similarly, it is mandatory to earn 75 Activity Points, in addition to the academic grades, for getting B.Tech degree by a student (Lateral Entry) who is admitted to the B.Tech program from the academic year 2018-19 onwards. (*Please see Table 1 for details.*) [Lateral Entry students will have a multiplying factor of 1.33 to bring uniformity in score].

Level of Entry in B.Tech Course	Total duration for earning Points	Minimum Points
1st Year from the academic year 2018-19 onwards	1 st to 4 th Year	100
2 nd Year from the academic year 2018-19 onwards	2 nd to 4 th Year	75
(Lateral Entry)		

Table – I

For existing Students (except students in the 4th year): Every student, who is admitted to the 4 years B.Tech program prior to the academic year 2018-19, is required to earn minimum number of Activity Points as per Table II in addition to the required academic grades, for getting MAKAUT,WB's B.Tech degree.

Current Semester	Total Points to be earned During the full course
2 nd	100
4 th	75
6 th	50

Table -II

These points must be earned on the basis of active participation in co-curricular and extracurricular activities spanning through all the semesters of study. Every student may choose, as per his/her liking, activities in order to achieve the mandatory points (as per Table-III, depending on his/her entry level), before becoming eligible for award of the Degree. These activities can be spread over the years, as per convenience of the student.

Notes:

- Current 4th year students who are going to sit for Final Semester examination in May-June, 2018 are outside the preview of this Mandatory Additional Requirement
- Every student shall participate in the co-curricular and extra-curricular activities and produce documentary proof to the designated Faculty Members appointed by the Head of Department / Principal / Director in the respective college. Thereby the student should earn the required Points before *her* she appears for his/ her Final Examinations.
- A student's result of his/her Final Examinations will be withheld until he/she completes the minimum Activity Points by the end of his/her B.Tech Program.
- In every semester, every student is required to prepare a file containing documentary proofs of activities, done by him / her. This file will be duly verified and Activity Points will be assigned by the teachers as appointed above, at the end of every semester.
- The college will form a 3 members committee and finalize the Activity Points for each student before entering them into the Online Point Entry System (at the URL, as specified by the COE of the University).
- Every student has to earn at least 100 activity points. The points students has earned will be reflected in the student's marksheet.
- Activity points earned by Lateral Entry students will be multiplied by 1.33.

Table III provides a List of Activity Heads and Sub-Activity Heads along with their capping of the Activity Points that can be earned by the students during the entire B.Tech duration.

Sl. No.	Name of the Activity	Points	Maximum Points Allowed
1.	MOOCS (SWAYAM/NPTEL/Spoken Tutorial) (per course)	20	40
2.	Tech Fest/Teachers Day/Freshers Welcome		
	Organizer	5	10
	Participants	3	6
5.	Rural Reporting	5	10
6.	Tree Plantation (per tree)	1	10
7.	Participation in Relief Camps	20	40
8.	Participation in Debate/Group Discussion/ Tech quiz	10	20
9.	Publication of Wall magazine in institutional level (magazine/article/internet)	10	20
10.	Publication in News Paper, Magazine & Blogs	10	20
11.	Research Publication (per publication)	15	30
12.	Innovative Projects (other than course curriculum)	30	60
13.	Blood donation	8	16
	Blood donation camp Organization	10	20
15.	Participation in Sports/Games		
	College level	5	10
	University Level	10	20
	District Level	12	24
	State Level	15	30
	National/International Level	20	20
21.	Cultural Programme (Dance, Drama, Elocution, Music etc.)	10	20
22.	Member of Professional Society	10	20
23.	Student Chapter	10	20
24.	Relevant Industry Visit & Report	10	20
25.	Photography activities in different Club(Photography club, Cine Club, Gitisansad)	5	10
26.	Participation in Yoga Camp (Certificate to be submitted)	5	10
27.	Self-Entrepreneurship Programme	20	20
28.	Adventure Sports with Certification	10	20
29.	Training to under privileged/Physically challenged	15	30
30.	Community Service & Allied Activities	10	20

Suggestions from the College Principals will be considered to append in the above Table-III.

Sd/-

Registrar(Acting) MAKAUT,WB

Maulana Abul Kalam Azad University of Technology, West Bengal Record of Activities for Mandatory Additional Requirement

Colleg	College Name (College Code):				Department:							
Stude	nt Name:	Univ	University Roll No:			Registration No:						
Sl No	Activity	Points	Max. Points Allowed		_	_	Po	oints Earne	d	_		
51 110	Activity	Poi	M. Poir Allo	Sem1	Sem2	Sem3	Sem4	Sem5	Sem6	Sem7	Sem8	Total
1	MOOCS (SWAYAM/NPTEL/Spoken Tutorial) per course											
	For 12 weeks duration	20	40									
	For 8 weeks duration	16	1 40									
2	Tech Fest/Teachers Day/Freshers Welcome											
	Organizer	5	10									
	Participants	3	6									
3	Rural Reporting	5	10									
4	Tree Plantation and up keeping (per tree)	1	10									
5	Participation in Relief Camps	20	40									
6	Participation in Debate/Group Discussion/ Tech quiz	10	20									
7	Publication of Wall magazine in institutional level (magazine/article/internet)		•									
	Editor	10	20									
	Writer	6	12									
8	Publication in News Paper, Magazine & Blogs	10	20									
9	Research Publication (per publication)	15	30									
10	Innovative Projects (other than course curriculum)	30	60									
11	Blood donation	8	16									
11	Blood donation camp Organization	10	20									

Maulana Abul Kalam Azad University of Technology, West Bengal Record of Activities for Mandatory Additional Requirement

		ıts	x. ss				P	oints Earne	d			
Sl No	Activity	Points	Max. Points Allowed	Sem1	Sem2	Sem3	Sem4	Sem5	Sem6	Sem7	Sem8	Total
12	Participation in Sports/Games				•	•	•	•		•		
	College level	5	10									
	University Level	10	20									
	District Level	12	24									
	State Level	15	30									
	National/International Level	20	20									
13	Cultural Programme (Dance, Drama, Elocution, Music etc.)	10	20									
14	Member of Professional Society	10	20									
15	Student Chapter	10	20									
16	Relevant Industry Visit & Report	10	20									
17	Photography activities in different Club(Photography club, Cine Club, Gitisansad)	5	10									
18	Participation in Yoga Camp (Certificate to be submitted)	5	10									
19	Self-Entrepreneurship Programme	20	20									
20	Adventure Sports with Certification	10	20									
21	Training to under privileged / Differently abled	15	30									
22	Community Service & Allied Activities	10	20									
	Total Point	s										
	Signature of Mentor											
	Signature of HOD	_										

*Please abide strictly to the Notes at the end of the Notice by Registrar, MAKAUT, WB regarding Mandatory Additional Requirement for earning B.Tech Degree

^{*} Annexure-I is to be retained in the Institute records with all documentary proofs of activities (to be verified by the University as and when required).

1st Year Curriculum for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

Maulana Abul Kalam Azad University of Technology, West Bengal

(Formerly West Bengal University of Technology)
BF- 142, Sector-I, Salt Lake, Kolkata- 700064, India

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

A. Definition of Credit:

1 Hr. Lecture (L) per week	1 credit
1 Hr. Tutorial (T) per week	1 credit
1 Hr. Practical (P) per week	0.5 credits

B. Range of credits:

A range of credits from 150 to 160 for a student to be eligible to get B.Tech Degree in Engineering. A student will be eligible to get B.Tech Degree *with Honours*, if he/she completes an additional 20 credits. These could be acquired through Massive Open Online Courses (MOOCs).

C. MOOCs for B. Tech Honours

The additional 20 credits (for obtaining B. Tech with Honours) are to be gained through MOOCs. The complete description of the MOOCs relevant for the first year course are given in *Annexure-I*. The courses for subsequent years of study will be posted subsequently.

D. Guidelines regarding Mandatory Induction Program for the new students

All concerned are requested to follow the guidelines given in *Annexure-II* (Notice dt.06/12/2017) concerning Mandatory Induction Program. The colleges/ Institute may also refer to the AICTE Model Curriculum for Undergraduate Degree Courses in Engineering & Technology (January 2018) -Volume I (Page No.31-38), if necessary.

E. Mandatory Additional Requirement for earning B. Tech Degree

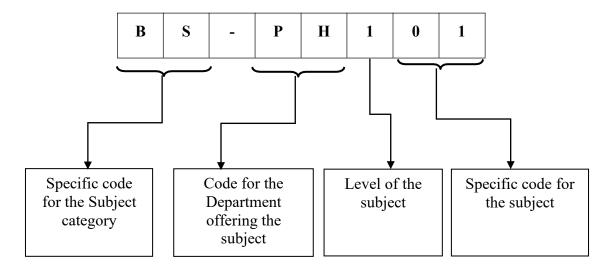
All concerned are requested to follow the guidelines in *Annexure-III* concerning Mandatory Additional Requirements.

F. Group division:

Group-A:

Chemistry based subjects: [Bio-Technology, Food Technology, Leather Technology, Textile Technology, Ceramic Technology, Chemical Engineering and any other Engineering that chooses to be Chemistry based] + Physics based subjects: [Mechanical Engineering, Production Engineering, Civil Engineering, Automobile Engineering, Marine Engineering, Apparel Production Engineering, Computer Science & Engineering, Information Technology.]

Group-B:


All Physics based subjects which are also Electrical & Electronics based [Electrical Engineering, Electronics & Communication Engineering, Applied Electronics & Instrumentation Engineering, Power Engineering, Electrical & Electronics Engineering, Bio-Medical Engineering, Instrumentation & Control Engineering]

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

G. Subject Numbering Scheme:

List of Codes for Subject Category					
Code Category Name					
BS	Basic Science Courses				
ES	Engineering Science Courses				
НМ	Humanities and Social Sciences including Management courses				
PC	Professional core courses				
PE	Professional Elective courses				
OE	Open Elective courses				
MC	Mandatory courses				
PW	Project				

	List of Codes for Departments							
Code	Name of the Department	Code	Name of the Department					
APM	Apparel Production Engineering	ECE	Electronics & Communication Engineering					
AEIE	AEIE Applied Electronics & Instrumentation Engineering FT		Food Technology					
AUE	Automobile Engineering	IT	Information Technology					
BME	Bio-Medical Engineering	ICE	Instrumentation & Control Engineering					
BT	Bio-Technology	LT	Leather Technology					
CT	Ceramic Technology	MRE	Marine Engineering					
CHE	Chemical Engineering	ME	Mechanical Engineering					
CE	Civil Engineering	PWE	Power Engineering					
CSE	Computer Science & Engineering	PE	Production Engineering					
EEE	Electrical & Electronics Engineering	TT	Textile Technology					
EE	Electrical Engineering							

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

	First Year First Semester Mandatory Induction Program- 3 weeks duration							
SI	Category	Subject Code	Subject Name		Numl		Credits	
No.				L	T	P		
The	ory							
1	Basic Science course	BS-PH101/ BS-CH101	Physics-I (Gr-A)/ Chemistry-I(Gr-B)	3	1	0	4	
2	Basic Science course	BS-M101/ BS-M102	Mathematics –IA*/ Mathematics –IB *	3	1	0	4	
3	Engineering Science Courses	ES-EE101	Basic Electrical Engineering	3	1	0	4	
		Total Theor	y	9	3	0	12	
Prac	ctical							
1	Basic Science course	BS-PH191/ BS-CH191	Physics-I Laboratory (Gr-A)/ Chemistry-I Laboratory (Gr-B)	0	0	3	1.5	
2	Engineering Science Courses	ES-EE191	Basic Electrical Engineering Laboratory	0	0	2	1	
3	Engineering Science Courses	ES-ME191/ ES-ME192	Engineering Graphics & Design(Gr-B)/ Workshop/Manufacturing Practices(Gr-A)	1	0	4	3	
		Total Praction	cal	1		9	5.5	
		Total of First Se	mester	10	3	9	17.5	

^{*} Mathematics –IA (BS-M101) - CSE & IT Mathematics –IB (BS-M102) - All stream except CSE & IT

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

		First Year	Second Semester				
SI	Category	Subject	Subject Name	Tota of co	Credits		
No.	<i>.</i>	Code	,	L	T	P	
The	ory						
1	Basic Science courses	BS-PH201/ BS-CH201	Physics-I (Gr-B)/ Chemistry-I (Gr-A)	3	1	0	4
2	Basic Science courses	BS-M201/ BS-M202	Mathematics –IIA [#] / Mathematics –IIB [#]	3	1	0	4
3	Engineering Science Courses	ES-CS201	Programming for Problem Solving	3	0	0	3
4	Humanities and Social Sciences including Management courses	HM-HU201	English	2	0	0	2
		Total Theory		11	2	0	13
Prac	etical						
1	Basic Science courses	BS-PH291/ BS-CH291	Physics-I Laboratory (Gr-B)/ Chemistry-I Laboratory (Gr-A)	0	0	3	1.5
2	Engineering Science Courses	ES-CS291	Programming for Problem Solving	0	0	4	2
3	Engineering Science Courses	ES-ME291/ ES-ME292	Engineering Graphics & Design(Gr-A)/ Workshop/Manufacturing Practices(Gr-B)	1	0	4	3
4	Humanities and Social Sciences including Management courses	HM-HU291	Language Laboratory	0	0	2	1
	Total Practical					13	7.5
	Total of Second Semester 12 2 13 20.5						

Mathematics –II (BS-M201) - CSE & IT Mathematics –II (BS-M202) - All stream except CSE & IT

	Group-A	Group-B
1 st Year 1 st Semester	Physics-I (BS-PH101); Workshop/Manufacturing Practices (ES-ME192)	Chemistry-I (BS-CH101); Engineering Graphics & Design (ES-ME191)
1 st Year 2 nd Semester	Chemistry-I (BS-CH201); Engineering Graphics & Design (ES-ME291)	Physics-I (BS-PH201); Workshop/Manufacturing Practices (ES-ME292)

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

Course Code: BS-PH101/BS-PH201	Category: Basic Science Courses
Course Title: Physics-I	Semester : First/ Second
L-T-P : 3-1-0	Credit:4
Pre-Requisites:	

Course objectives:

Basic concepts of mechanics, optics and its applications, electricity, magnetism and qualitative understanding of concepts of quantum physics and statistical mechanics.

1. Mechanics (7L)

Problems including constraints & friction. Basic ideas of vector calculus and partial differential equations. Potential energy function F = -grad V, equipotential surfaces and meaning of gradient. Conservative and non-conservative forces. Conservation laws of energy & momentum. Non-inertial frames of reference. Harmonic oscillator; Damped harmonic motion forced oscillations and resonance. Motion of a rigid body in a plane and in 3D. Angular velocity vector. Moment of inertia.

2. Optics (5L)

- Distinction between interference and diffraction, Fraunhofer and Fresnel diffraction, Fraunhofer
 diffraction at single slit, double slit, and multiple slits (only the expressions for max;min, & intensity
 and qualitative discussion of fringes); diffraction grating(resolution formulae only), characteristics of
 diffration grating and its applications.
- Polarisation: Introduction, polarisation by reflection, polarisation by double reflection, scattering of light, circular and elliptical polarisation, optical activity.
- Lasers: Principles and working of laser: population inversion, pumping, various modes, threshold population inversion with examples.

3. Electromagnetism and Dielectric Magnetic Properties of Materials (8L)

- Maxwell's equations. Polarisation, permeability and dielectric constant, polar and non-polar dielectrics, internal fields in a solid, Clausius- Mossotti equation(expression only), applications of dielectrics.
- Magnetisation, permeability and susceptibility, classification of magnetic materials, ferromagnetism, magnetic domains and hysteresis, applications.

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

4. Quantum Mechanics (16L)

Introduction to quantum physics, black body radiation, explanation using the photon concept,
 Compton effect, de Broglie hypothesis, wave-particle duality, verification of matter waves,
 uncertainty principle, Schrodinger wave equation, particle in box, quantum harmonic oscillator,
 hydrogen atom.

5. Statistical Mechanics (8L)

• Macrostate, Microstate, Density of states, Qualitative treatment of Maxwell Boltzmann, Fermi-Dirac and Bose-Einstein statistics.

Course outcomes:

Students will be familiar with

- Basic concepts of mechanics
- Bragg's Law and introduction to the principles of lasers, types of lasers and applications.
- Various terms related to properties of materials such as, permeability, polarization, etc.
- Some of the basic laws related to quantum mechanics as well as magnetic and dielectric properties of materials.
- Simple quantum mechanics calculations.

•

Learning Resources:

- 1. Introduction to Electrodynamics, David J. Griffiths, Pearson Education India Learning Private Limited
- 2. Principles of Physics, 10ed, David Halliday, Robert Resnick Jearl Walker, Wiley
- 3. Electricity, Magnetism, and Light, Wayne M. Saslow, Academic Press
- 4. Engineering Mechanics (In SI Units) (SIE), S. Timoshenko, D.H. Young, J.V. Rao, Sukumar Pati, McGraw Hill Education
- 5. Classical mechanics, Narayan Rana, Pramod Joag, McGraw Hill Education
- 6. Introduction to Classical Mechanics, R Takwale, P Puranik, McGraw Hill Education
- 7. Engineering Mechanics, M.K. Harbola, Cengage India
- 8. An Introduction to Mechanics (SIE), David Kleppner, Robert Kolenkow, McGraw Hill Education
- 9. Principles of mechanics, John L. Synge and Byron A. Griffith, New York, McGraw-Hill
- 10. Mechanics (Dover Books on Physics), J. P. Den Hartog, Dover Publications Inc.
- 11. Engineering Mechanics: Dynamics, L.G. Kraige J.L. Meriam, Wiley
- 12. Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles, Robert Eisberg, Robert Resnick, Wiley
- 13. Introduction to Quantum Mechanics, J. Griffiths David, Pearson Education
- 14. Modern Quantum Mechanics, J. J. Sakurai, Cambridge University Press
- 15. Optics, Hecht, Pearson Education
- 16. Optics, Ghatak, McGraw Hill Education India Private Limited
- 17. Fundamentals of Statistical and Thermal Physics, Reif, Sarat Book Distributors
- 18. Statistical Mechanics, Pathria, Elsevier
- 19. Statistical Physics, L.D.Landau , E.M. Lifshitz, Butterworth-Heinemann

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

Course Code : BS-CH101/ BS-CH201	Category: Basic Science Courses
Course Title : Chemistry-I	Semester : First/ Second
L-T-P : 3-1-0	Credit:4
Pre-Requisites:	

Detailed contents

i) Atomic and molecular structure (10 lectures)

Schrodinger equation. Particle in a box solutions and their applications for simple sample. Molecular orbitals of diatomic molecules (e.g.H₂). Energy level diagrams of diatomic. Pi-molecular orbitals of butadiene and benzene and aromaticity. Crystal field theory and the energy level diagrams for transition metal ions and their magnetic properties. Band structure of solids and the role of doping on band structures.

ii) Spectroscopic techniques and applications (8 lectures)

Principles of spectroscopy and selection rules. Electronic spectroscopy. Fluorescence and its applications in medicine. Vibrational and rotational spectroscopy of diatomic molecules. Applications. Nuclear magnetic resonance and magnetic resonance imaging, surface characterisation techniques. Diffraction and scattering. iii)Intermolecular forces and potential energy surfaces (4 lectures)

Ionic, dipolar and van Der Waals interactions. Equations of state of real gases and critical phenomena.

iv) Use of free energy in chemical equilibria (8 lectures)

First and second laws of thermodynamics and thermodynamic functions: energy, entropy and free energy. Estimations of entropy and free energies. Free energy and emf. Cell potentials, the Nernst equation and applications. Acid base, oxidation reduction and solubility equilibria. Water chemistry. Corrosion. Use of free energy considerations in metallurgy through Ellingham diagrams.

v) Periodic properties (4 Lectures)

Effective nuclear charge, penetration of orbitals, variations of s, p, d and f orbital energies of atoms in the periodic table, electronic configurations, atomic and ionic sizes, ionization energies, electron affinity and electronegativity, polarizability, oxidation states, coordination numbers and geometries, hard soft acids and bases, molecular geometries

vi) Stereochemistry (4 lectures)

Representations of 3 dimensional structures, structural isomers and stereoisomers, configurations and symmetry and chirality, enantiomers, diastereomers, optical activity, absolute configurations and conformational analysis. Isomerism in transitional metal compounds

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

vii) Organic reactions and synthesis of a drug molecule (4 lectures)

Introduction to reactions involving substitution, addition, elimination, oxidation, reduction, cyclization and ring openings. Synthesis of a commonly used drug molecule.

Course Outcomes

The concepts developed in this course will aid in quantification of several concepts in chemistry that have been introduced at the 10+2 levels in schools. Technology is being increasingly based on the electronic, atomic and molecular level modifications. Quantum theory is more than 100 years old and to understand phenomena at nanometer levels, one has to base the description of all chemical processes at molecular levels. The course will enable the student to:

Analyse microscopic chemistry in terms of atomic and molecular orbitals and intermolecular forces.

Rationalise bulk properties and processes using thermodynamic considerations.

Distinguish the ranges of the electromagnetic spectrum used for exciting different molecular energy levels in various spectroscopic techniques

Rationalise periodic properties such as ionization potential, electronegativity, oxidation states and electronegativity.

List major chemical reactions that are used in the synthesis of molecules.

Learning Resources:

- 1. Engineering Chemistry, Satyaprakash, Khanna Book Publishing, Delhi
- 2. University chemistry, by B. H. Mahan
- 3. Chemistry: Principles and Applications, by M. J. Sienko and R. A. Plane
- 4. Fundamentals of Molecular Spectroscopy, by C. N. Banwell
- 5. Engineering Chemistry (NPTEL Web-book), by B. L. Tembe, Kamaluddin and M. S. Krishnan
- 6. Physical Chemistry, by P. W. Atkins
- 7. Spectroscopy of Organic Compounds, by P.S.Kalsi, New Age International Pvt Ltd Publishers
- 8. Physical Chemistry, P. C. Rakshit, Sarat Book House
- 9. Organic Chemistry: Structure and Function by K. P. C. Volhardt and N. E. Schore, 5th Edition http://bcs.whfreeman.com/vollhardtschore5e/default.asp

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

Course Code: BS-M101	Category: Basic Science Course
Course Title: Mathematics – I A	Semester : First (CSE & IT)
L-T-P : 3-1-0	Credit: 4
Pre-Requisites: High School Mathematics	,

Module No.	Description of Topic	Lectures Hours
	Calculus (Integration):	
	Evolutes and involutes; Evaluation of definite and improper integrals; Beta and	
1	Gamma functions and their properties; Applications of definite integrals to evaluate surface areas and volumes of revolutions.	8
	Calculus (Differentiation):	
	Rolle's Theorem, Mean value theorems, Taylor's and Maclaurin's theorems with	
2	remainders; Indeterminate forms and L'Hospital's rule; Maxima and minima.	6
	Matrices:	
	Matrices, Vectors: addition and scalar multiplication, matrix multiplication; Linear	
3	systems of equations, linear Independence, rank of a matrix, determinants,	7
3	Cramer's Rule, inverse of a matrix, Gauss elimination and Gauss-Jordan	/
	elimination.	
	Vector Spaces:	
	Vector Space, linear dependence of vectors, Basis, Dimension; Linear	
4	transformations (maps), Range and Kernel of a linear map, Rank and Nullity,	9
	Inverse of a linear transformation, Rank-Nullity theorem, composition of linear maps, Matrix associated with a linear map.	
	Vector Spaces (Continued):	
	Eigenvalues, Eigenvectors, Symmetric, Skew-symmetric, and Orthogonal	
	Matrices, Eigenbases.	
5	Diagonalization; Inner product spaces, Gram-Schmidt orthogonalization.	10

Course Outcomes:

The students will be able to:

Apply the concept and techniques of differential and integral calculus to determine curvature and evaluation of different types of improper integrals.

Understand the domain of applications of mean value theorems to engineering problems.

Learn different types of matrices, concept of rank, methods of matrix inversion and their applications.

Understand linear spaces, its basis and dimension with corresponding applications in the field of computer science.

Learn and apply the concept of eigen values, eigen vectors, diagonalisation of matrices and orthogonalization in inner product spaces for understanding physical and engineering problems

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology (Applicable from the academic session 2018-2019)

Learning Resources:

- 1. Reena Garg, Engineering Mathematics-I, Khanna Publishers.
- 2. Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons.
- 3. Michael Greenberg, Advanced Engineering Mathematics, Pearson.
- 4. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers.
- 5. Kanti B. Dutta, Mathematical Methods of Science and Engineering, Cenage Learning.
- 6. Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi.
- 7. S.K. Mapa, Higher Algebra: Abstract and Linear, Sarat Book House Pvt.Ltd.
- 8. Hoffman and Kunze: Linear algebra, PHI.

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

Course Code : BS-M102	Category: Basic Science Course
Course Title: Mathematics –I B	Semester: First (All stream except CSE & IT)
L-T-P : 3-1-0	Credit: 4
Pre-Requisites: High School Mathematics	

Module No.	Description of Topic	Lectures Hours
	Calculus (Integration):	
	Evolutes and involutes; Evaluation of definite and improper integrals; Beta and	8
1	Gamma functions and their properties; Applications of definite integrals to	-
	evaluate surface areas and volumes of revolutions.	
	Calculus (Differentiation):	
	Rolle's Theorem, Mean value theorems, Taylor's and Maclaurin's theorems with	6
2	remainders; Indeterminate forms and L'Hospital's rule; Maxima and minima.	O
	Sequence and Series:	
	Convergence of sequence and series, tests for convergence; Power series,	11
3	Taylor's series, series for exponential, trigonometric and logarithm functions;	11
	Fourier series: Half range sine and cosine series, Parseval's theorem.	
	Multivariate Calculus:	
	Limit, continuity and partial derivatives, Directional derivatives, Total	9
4	derivative; Tangent plane and normal line; Maxima, minima and saddle points;	
	Method of Lagrange multipliers; Gradient, Curl and Divergence.	
	Matrices:	
	Inverse and rank of a matrix, Rank-nullity theorem; System of linear equations;	8
5	Symmetric, Skew-symmetric and Orthogonal matrices; Determinants;	O
	Eigenvalues and Eigenvectors; Diagonalization of matrices; Cayley-Hamilton	
	Theorem, and Orthogonal transformation.	

Course Outcomes:

After completing the course the student will be able to

Apply the concept and techniques of differential and integral calculus to determine curvature and evaluation of different types of improper integrals.

Understand the domain of applications of mean value theorems to engineering problems.

Learn the tools of power series and Fourier series to analyze engineering problems and apply the concept of convergence of infinite series in many approximation techniques in engineering disciplines.

Apply the knowledge for addressing the real life problems which comprises of several variables or attributes and identify extremum points of different surfaces of higher dimensions.

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

Understand different types of matrices, their eigen values, eigen vectors, rank and also their orthogonal transformations which are essential for understanding physical and engineering problems.

Learning Resources:

- 1. Reena Garg, Engineering Mathematics-I, Khanna Publishers.
- 2. Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons.
- 3. Michael Greenberg, Advanced Engineering Mathematics, Pearson.
- 4. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers.
- 5. Kanti B. Dutta, Mathematical Methods of Science and Engineering, Cenage Learning.
- 6. Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi.

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

Course Code : ES-EE101	Category: Engineering Science Courses
Course Title: Basic Electrical Engineering	Semester : First
L-T-P : 3-1-0	Credit: 4
Pre-Requisites:	

Detailed contents:

Module 1: DC Circuits (8 hours)

Electrical circuit elements (R, L and C), voltage and current sources, Kirchoff current and voltage laws, analysis of simple circuits with dc excitation. Superposition, Thevenin and Norton Theorems. Time-domain analysis of first-order RL and RC circuits.

Module 2: AC Circuits (8 hours)

Representation of sinusoidal waveforms, peak and rms values, phasor representation, real power, reactive power, apparent power, power factor. Analysis of single-phase ac circuits consisting of R, L, C, RL, RC, RLC combinations (series and parallel), resonance. Three phase balanced circuits, voltage and current relations in star and delta connections.

Module 3: Transformers (6 hours)

Magnetic materials, BH characteristics, ideal and practical transformer, equivalent circuit, losses in transformers, regulation and efficiency. Auto-transformer and three-phase transformer connections.

Module 4: Electrical Machines (8 hours)

Generation of rotating magnetic fields, Construction and working of a three-phase induction motor, Significance of torque-slip characteristic. Loss components and efficiency, starting and speed control of induction motor. Single-phase induction motor. Construction, working, torque-speed characteristic and speed control of separately excited dc motor. Construction and working of synchronous generators.

Module 5: Power Converters (6 hours)

DC-DC buck and boost converters, duty ratio control. Single-phase and three-phase voltage source inverters; sinusoidal modulation.

Module 6: Electrical Installations (6 hours)

Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, Earthing. Types of Batteries, Important Characteristics for Batteries. Elementary calculations for energy consumption, power factor improvement and battery backup.

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

Course Outcomes

To understand and analyze basic electric and magnetic circuits

To study the working principles of electrical machines and power converters.

To introduce the components of low voltage electrical installations

Learning Recourses:

- 1. Ritu Sahdev, Basic Electrical Engineering, Khanna Book Publishing Co. (P) Ltd., Delhi.
- 2. D. P. Kothari and I. J. Nagrath, "Basic Electrical Engineering", Tata McGraw Hill, 2010.
- 3. D. C. Kulshreshtha, "Basic Electrical Engineering", McGraw Hill, 2009.
- 4. L. S. Bobrow, "Fundamentals of Electrical Engineering", Oxford University Press, 2011.
- 5. E. Hughes, "Electrical and Electronics Technology", Pearson, 2010.
- 6. V. D. Toro, "Electrical Engineering Fundamentals", Prentice Hall India, 1989.

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

Course Code : BS-PH191/ BS-PH291	Category: Basic Science course
Course Title: Physics-I Laboratory	Semester : First/ Second
L-T-P : 0-0-3	Credit:1.5
Pre-Requisites:	

Choose 10 experiments including at least one from Optics, Electricity and Magnetism and Quantum Mechanics and at least a total of six from these three groups.

Experiments in Optics

- 1. Determination of dispersive power of the material of a prism
- 2. Determination of wavelength of a monochromatic light by Newton's ring
- 3. Determination of wavelength of a monochromatic light by Fresnel's bi-prism
- 4. Determination of wavelength of the given laser source by diffraction method

Electricity & Magnetism experiments

- 1. Determination of thermo electric power of a given thermocouple.
- 2. Determination of specific charge (e/m) of electron by J.J. Thompson's method.
- 3. Determination of dielectric constant of a given dielectric material.
- 4. Determination of Hall coefficient of a semiconductor by four probe method.
- 5. To study current voltage characteristics, load response, areal characteristic and spectral response of a photovoltaic solar cell.
- 6. Determination of resistance of ballistic galvanometer by half deflection method and study of variation of logarithmic decrement with series resistance.
- 7. Determination of unknown resistance using Carey Foster's bridge
- 8. Study of Transient Response in LR, RC and LCR circuits using expeyes
- 9. Generating sound from electrical energy using expeyes

Experiments in Quantum Physics

- 1. Determination of Stefan-Boltzmann constant.
- 2. Determination of Planck constant using photocell.
- 3. Determination of Lande-g factor using Electron spin resonance spectrometer.
- 4. Determination of Rydberg constant by studying Hydrogen spectrum.
- 5. Determination of Band gap of semiconductor.
- 6. To study current voltage characteristics, load response, areal characteristic and spectral response of a photovoltaic solar cell.

Miscellaneous experiments

- 1. Determination of Young's modulus of elasticity of the material of a bar by the method of flexure
- 2. Determination of bending moment and shear force of a rectangular beam of uniform cross-section
- 3. Determination of modulus of rigidity of the material of a rod by static method
- 4. Determination of rigidity modulus of the material of a wire by dynamic method
- 5. To determine the moment of inertia of a body about an axis passing through its centre of gravity and to determine the modulus of rigidity of the material of the suspended wire
- 6. Determination of coefficient of viscosity by Poiseulle's capillary flow method

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

Course Code: BS-CH191/BS-CH291	Category: Basic Science Courses
Course Title: Chemistry-I Laboratory	Semester : First/ Second
L-T-P : 0-0-3	Credit:1.5
Pre-Requisites:	

Choose 10 experiments from the following:

- 1. Conductometric titration for determination of the strength of a given HCl solution by titration against a standard NaOH solution.
- 2. pH- metric titration for determination of strength of a given HCl solution against a standard NaOH solution.
- 3. Determination of dissolved oxygen present in a given water sample.
- 4. To determine chloride ion in a given water sample by Argentometric method (using chromate indicator solution)
- 5. Determination of surface tension and viscosity
- 6. Thin layer chromatography
- 7. Ion exchange column for removal of hardness of water
- 8. Determination of the rate constant of a reaction
- 9. Determination of cell constant and conductance of solutions
- 10. Potentiometry determination of redox potentials and emfs
- 11. Saponification/acid value of an oil
- 12. Chemical analysis of a salt
- 13. Determination of the partition coefficient of a substance between two immiscible liquids
- 14. Adsorption of acetic acid by charcoal
- 15. Use of the capillary viscosimeters to the demonstrate of the isoelectric point as the pH of minimum viscosity for gelatin sols and/or coagulation of the white part of egg.

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

Course Code : ES-EE191	Category: Engineering Science Courses		
Course Title: Basic Electrical Engineering Laboratory	Semester : First		
L-T-P : 0-0-2	Credit: 1		
Pre-Requisites:			

Choose 10 experiments from the following:

- 1. First activity: Introduction to basic safety precautions and mentioning of the do's and Don'ts. Noting down list of experiments to be performed, and instruction for writing the laboratory reports by the students. Group formation. Students are to be informed about the modalities of evaluation.
- 2. Introduction and uses of following instruments:
 - (a) Voltmeter
 - (b) Ammeter
 - (c) Multimeter
 - (d) Oscilloscope

Demonstration of real life resistors, capacitors with color code, inductors and autotransformer.

- 3. Demonstration of cut-out sections of machines: DC machine, Induction machine, Synchronous machine and single phase induction machine.
- 4. Calibration of ammeter and Wattmeter.
- 5. Determination of steady state and transient response of R-L, R-C and R-L-C circuit to a step change in voltage.
- 6. Determination of steady state response of R-L and R-C and R-L-C circuit and calculation of impedance and power factor.
- 7. Determination of resonance frequency and quality factor of series and parallel R-L-C circuit.
- 8. (a) Open circuit and short circuit test of a single-phase transformer
 - (b) Load test of the transformer and determination of efficiency and regulation
- 9. Demonstration of three phase transformer connections. Voltage and current relationship, phase shifts between the primary and secondary side.
- 10. Measurement of power in a three phase unbalanced circuit by two wattmeter method.
- 11. Determination of Torque –Speed characteristics of separately excited DC motor.
- 12. Determination of Torque speed characteristics and observation of direction reversal by change of phase sequence of connection of Induction motor.
- 13. Determination of operating characteristics of Synchronous generator.
- 14. Demonstration of operation of (a) DC-DC converter (b) DC-AC converter (c) DC-AC converter for speed control of an Induction motor
- 15. Demonstration of components of LT switchgear.

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology (Applicable from the academic session 2018-2019)

Course Code: ES-ME191/ES-ME 291	Category: Engineering Science Courses		
Course Title: Engineering Graphics & Design	Semester : First/ Second		
L-T-P : 1-0-4	Credit: 3		
Pre-Requisites:			

Sl. No.	Content	Lecture (L)	Practical (P)
	INTRODUCTION TO ENGINEERING DRAWING		
	Principles of Engineering Graphics and their significance, usage of		
1	Drawing instruments, lettering, Different types of lines and their use;	1	4
	Drawing standards and codes.		
	LETTERING, DIMENSIONING, SCALES		
2	Plain scale, Diagonal scale and Vernier Scales.	1	4
	GEOMETRICAL CONSTRUCTION AND CURVES		
	Construction of polygons, Conic sections including the Rectangular		
3	Hyperbola (General method only); Cycloid, Epicycloid, Hypocycloid,	1	4
	Involute, Archemedian Spiral.		
	PROJECTION OF POINTS, LINES, SURFACES		
	Principles of Orthographic Projections-Conventions - 1st and 3rd angle		
4	projection, Projections of Points and lines inclined to both planes;	1	4
	Projections of planes (Rectangle, pentagon, Hexagon etc.) inclined Planes		
	- Auxiliary Planes.		
	PROJECTION OF REGULAR SOLIDS		
	Regular solids inclined to both the Planes- Auxiliary Views; Draw		
5	simple annotation, dimensioning and scale (Cube, Pyramid, Prism,	1	4
	Cylinder, Cone).		
	COMBINATION OF REGULAR SOLIDS, FLOOR PLANS		
	Regular solids in mutual contact with each other like Spheres in contact		
6	with cones standing on their base. Floor plans that include: windows,	1	4
	doors, and fixtures such as WC, bath, sink, shower, etc.		
	ISOMETRIC PROJECTIONS		
7	Principles of Isometric projection – Isometric Scale, Isometric		
	Views, Conventions; Isometric Views of lines, Planes, Simple and	1	4
	compound Solids; Conversion of Isometric Views to Orthographic		
	Views and Vice-versa, Conventions;		

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology (Applicable from the academic session 2018-2019)

	SECTIONS AND SECTIONAL VIEWS OF RIGHT ANGULAR	,	
	SOLIDS		
	Prism, Cylinder, Pyramid, Cone - Auxiliary Views; Development of		
8	surfaces of Right Regular Solids - Prism, Pyramid, Cylinder and Cone;	1	4
	Draw the sectional orthographic views of geometrical solids, objects		
	from industry and dwellings (foundation to slab only)		
	OVERVIEW OF COMPUTER GRAPHICS, CUSTOMISATION&		
	CAD DRAWING		
	listing the computer technologies that impact on graphical		
	communication, Demonstrating knowledge of the theory of CAD		
	software [such as: The Menu System, Toolbars (Standard, Object		
	Properties, Draw, Modify and Dimension), Drawing Area (Background,		
	Crosshairs, Coordinate System), Dialog boxes and windows, Shortcut		
	menus (Button Bars), The Command Line (where applicable), The Status		
9	Bar, Different methods of zoom as used in CAD, Select and erase	1	4
	objects.; Isometric Views of lines, Planes, Simple and compound Solids];		
	Set up of the drawing page and the printer, including scale settings,		
	Setting up of units and drawing limits; ISO and ANSI standards for		
	coordinate dimensioning and tolerancing; Orthographic constraints,		
	Snap to objects manually and automatically; Producing drawings		
	by using various coordinate input entry methods to draw straight lines,		
	Applying various ways of drawing circles;		
	ANNOTATIONS, LAYERING & OTHER FUNCTIONS		
	applying dimensions to objects, applying annotations to drawings;		
	Setting up and use of Layers, layers to create drawings, Create, edit		
	and use customized layers; Changing line lengths through modifying		
	existing lines (extend/lengthen); Printing documents to paper using		
	the print command; orthographic projection techniques; Drawing		
	sectional views of composite right regular geometric solids and project		
10	the true shape of the sectioned surface; Drawing annotation, Computer-	2	8
	aided design (CAD) software modeling of parts and assemblies.		
	Parametric and non-parametric solid, surface, and wireframe models. Part		
	editing and two-dimensional documentation of models. Planar projection		
	theory, including sketching of perspective, isometric, multiview,		
	auxiliary, and section views. Spatial visualization exercises.		
	Dimensioning guidelines, tolerancing techniques; dimensioning and scale		
	multi views of dwelling;		

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

	DEMONSTRATION OF A SIMPLE TEAM DESIGN PROJECT	,		
	Geometry and topology of engineered components: creation of			
	engineering models and their presentation in standard 2D blueprint form			
	and as 3D wire-frame and shaded solids; meshed topologies for			
	engineering analysis and tool-path generation for component			
	manufacture; geometric dimensioning and tolerancing; Use of solid-			
modeling software for creating associative models at the component and 2		8		
	assembly levels; floor plans that include: windows, doors, and fixtures			
	such as WC, bath, sink, shower, etc. Applying colour coding according to			
	building drawing practice; Drawing sectional elevation showing			
	foundation to ceiling; Introduction to Building Information Modelling			
	(BIM).			
1			1	

Course Outcomes

The student will learn:

- Introduction to engineering design and its place in society
- Exposure to the visual aspects of engineering design
- Exposure to engineering graphics standards
- Exposure to solid modelling

General Instructions

- 1. In every topic some problems are to be done in the class and some are to be given to students as home assignment.
- 2. The problems for class work are to be prepared on drawing sheet of A1 size in the class/ using AutoCAD software.
- 3. The problems for home assignments are to be prepared on drawing copy/ using AutoCAD software.
- 4. Print out of every assignment is to be taken for CAD Drawings on Drawing sheets (A4 Sheets).
- 5. A title block must be prepared in each sheet/assignment.

Following is the list of drawing instruments that required for making engineering drawings on paper with perfection.

- 1. Drawing Board
- 2. Mini drafter/ Set-squares (45°–45° & 60°–90°), T-square
- 3. Protractor (180°, 360°)
- 4. Scales (Plain, Diagonal)
- 5. Compass (Small and Large)
- 6. Divider (Small and Large)

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

- 7. French Curves
- 8. Drawing paper (A1 Size)
- 9. Drawing pencil (H, HB, B)
- 10. Sharpener
- 11. Eraser
- 12. Drawing pins & clips
- 13. Duster or handkerchief etc.

Learning Resources:

- 1. Pradeep Jain, Ankita Maheswari, A.P. Gautam, Engineering Graphics & Design, Khanna Publishing House
- 2. Bhatt N.D., Panchal V.M. & Ingle P.R., (2014), Engineering Drawing, Charotar Publishing House
- 3. Agrawal B. & Agrawal C. M. (2012), Engineering Graphics, TMH Publication
- 4. Shah, M.B. & Rana B.C. (2008), Engineering Drawing and Computer Graphics, Pearson Education
- 5. Narayana, K.L. & P Kannaiah (2008), Text book on Engineering Drawing, Scitech Publishers
- 6. Corresponding set of CAD Software Theory and User Manuals

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

Course Code : ES-ME192/ ES-ME 292	Category: Engineering Science Courses	
Course Title: Workshop/ Manufacturing Practices	Semester : First/ Second	
L-T-P : 1-0-4 Credit:3		
Pre-Requisites:		

(i) Lectures & videos:

Detailed contents:

- 1. Manufacturing Methods- casting, forming, machining, joining, advanced manufacturing methods
- 2. CNC machining, Additive manufacturing
- 3. Fitting operations & power tools
- 4. Electrical & Electronics
- 5. Carpentry
- 6. Plastic moulding, glass cutting
- 7. Metal casting
- 8. Welding (arc welding & gas welding), brazing

(ii) Workshop Practice:

Machine shop (8 hours)

Typical jobs that may be made in this practice module:

To make a pin from a mild steel rod in a lathe.

To make rectangular and vee slot in a block of cast iron or mild steel in a shaping and / or milling machine.

Fitting shop (8 hours)

Typical jobs that may be made in this practice module:

To make a Gauge from MS plate.

Carpentry (8 hours)

Typical jobs that may be made in this practice module:

To make wooden joints and/or a pattern or like.

Welding shop (8 hours (Arc welding 4 hrs + gas welding 4 hrs))

Typical jobs that may be made in this practice module:

ARC WELDING (4 hours): To join two thick (approx 6mm) MS plates by manual metal arc welding.

GAS WELDING (4 hours): To join two thin mild steel plates or sheets by gas welding.

Casting (8 hours)

Typical jobs that may be made in this practice module:

One/ two green sand moulds to prepare, and a casting be demonstrated.

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

Smithy (4 hours) \sim 4 hours

Typical jobs that may be made in this practice module:

A simple job of making a square rod from a round bar or like.

Plastic moulding & Glass cutting (4 hours)

Typical jobs that may be made in this practice module:

For plastic moulding, making at least one simple plastic component should be made.

For glass cutting, three rectangular glass pieces may be cut to make a kaleidoscope using a black colour diamond cutter, or similar other components may be made.

Electrical & Electronics (8 hours)

Familiarization with LT switchgear elements, making its sketches and noting down its specification. Kitkat fuse, Glass cartridge fuse, Plastic fuse holders (optional), Iron clad isolators, MCB style isolators, Single phase MCB, Single-phase wire, wiring cable.

Demonstration of domestic wiring involving two MCB, two piano key switches, one incandescent lamp, one LED lamp and plug point.

Simple wiring exercise to be executed to understand the basic electrical circuit.

Simple soldering exercises to be executed to understand the basic process of soldering.

Fabrication of a single-phase full wave rectifier with a step down transformer using four diodes and electrolytic capacitor and to find its volt-ampere characteristics to understand basic electronic circuit fabrication.

Examinations could involve the actual fabrication of simple components, utilizing one or more of the techniques covered above.

Laboratory Outcomes

Upon completion of this laboratory course, students will be able to fabricate components with their own hands.

They will also get practical knowledge of the dimensional accuracies and dimensional tolerances possible with different manufacturing processes.

By assembling different components, they will be able to produce small devices of their interest.

Learning Resources:

- 1. Hajra Choudhury S.K., Hajra Choudhury A.K. and Nirjhar Roy S.K., "Elements of Workshop Technology", Vol. I 2008 and Vol. II 2010, Media promoters and publishers private limited, Mumbai.
- 2. Kalpakjian S. and Steven S. Schmid, "Manufacturing Engineering and Technology", 4th edition, Pearson Education India Edition, 2002.
- 3. Gowri P. Hariharan and A. Suresh Babu, "Manufacturing Technology I" Pearson Education, 2008.
- 4. Roy A. Lindberg, "Processes and Materials of Manufacture", 4th edition, Prentice Hall India, 1998.
- 5. Rao P.N., "Manufacturing Technology", Vol. I and Vol. II, Tata McGrawHill House, 2017.

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

Course Code: BS-M201 Category: Basic Science Course		
Course Title: Mathematics – II A	Semester : Second (CSE &IT)	
L-T-P : 3-1-0	Credit: 4	
Pre-Requisites: High School Mathematics and BS-M101		

Module No.	Description of Topic	Lectures Hours
	Basic Probability: Probability spaces, conditional probability, independence;	
1	Discrete random variables, Independent random variables, the Multinomial	
	distribution, Poisson approximation to the Binomial distribution, infinite sequences	11
	of Bernoulli trials, sums of independent random variables; Expectation of Discrete	
	Random Variables, Moments, Variance of a sum, Correlation coefficient,	
	Chebyshev's Inequality.	
	Continuous Probability Distributions:	
2	Continuous random variables and their properties, Distribution functions and	4
_	densities, Normal, Exponential and Gamma densities.	
	Bivariate Distributions:	_
3	Bivariate distributions and their properties, distribution of sums and quotients,	5
J	Conditional densities, Bayes' rule.	
	Basic Statistics:	
4	Measures of Central tendency, Moments, Skewness and Kurtosis, Probability	8
•	distributions: Binomial, Poisson and Normal and evaluation of statistical	
	parameters for these three distributions, Correlation and regression - Rank	
	correlation.	
	Applied Statistics:	
5	Curve fitting by the method of least squares- fitting of straight lines, second degree	8
· ·	parabolas and more general curves. Test of significance: Large sample test for	
	single proportion, difference of proportions, single mean, difference of means, and	
	difference of standard deviations.	
6	Small samples:	
	Test for single mean, difference of means and correlation coefficients, test for ratio	4
	of variances - Chi-square test for goodness of fit and independence of attributes.	

Course Outcomes:

The students will be able to:

Learn the ideas of probability and random variables, various discrete and continuous probability distributions with their properties and their applications in physical and engineering environment.

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

Understand the basic ideas of statistics with different characterisation of a univariate and bivariate data set.

Apply statistical tools for analysing data samples and drawing inference on a given data set.

Learning Resources:

- 1. Reena Garg, Chandrika Prasad, Advanced Engineering Mathematics, Khanna Publishers.
- 2. Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons
- 3. S. Ross, A First Course in Probability, Pearson Education India
- 4. W. Feller, An Introduction to Probability Theory and its Applications, Vol. 1, Wiley.
- 5. John E. Freund, Ronald E. Walpole, Mathematical Statistics, Prentice Hall.
- 6. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers.
- 7. N.G. Das, Statistical Methods (Combined Volume), Tata-McGraw Hill.

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

Course Code : BS-M202	Category: Basic Science Course	
Course Title: Mathematics – II B	Semester: Second (All stream except CSE & IT)	
L-T-P : 3-1-0 Credit: 4		
Pre-Requisites: High School Mathematics and BS-M102		

Module No.	Description of Topic	Lectures Hours
	Multivariate Calculus (Integration):	
1	Multiple Integration: Double integrals (Cartesian), change of order of integration	11
	in double integrals, change of variables (Cartesian to Polar), Applications: Areas	
	and volumes, Center of mass and Gravity (constant and variable densities); Triple	
	integrals (Cartesian), Orthogonal curvilinear coordinates, Simple applications	
	involving cubes, sphere and rectangular parallelepipeds; Scalar line integrals,	
	vector line integrals, scalar surface integrals, vector surface integrals, Theorems of	
	Green, Gauss and Stokes.	
	First order ordinary differential equations:	
2	Exact, linear and Bernoulli's equations, Equations not of first degree: equations	5
2	solvable for p, equations solvable for y, equations solvable for x and Clairaut's	3
	type.	
	Ordinary differential equations of higher orders:	
3	Second order linear differential equations with constant coefficients, Use of D-	
	operators, Second order linear differential equations with variable coefficients,	9
	method of variation of parameters, Cauchy-Euler equation; Power series solutions;	
	Legendre polynomials, Bessel functions of the first kind and their properties.	
	Complex Variable – Differentiation	
4	Differentiation of complex functions, Cauchy-Riemann equations, Analytic	
·	functions, Harmonic functions, determination of harmonic conjugate, elementary	6
	analytic functions (exponential, trigonometric, logarithmic) and their properties;	
	Conformal mappings, Mobius transformations and their properties.	
	Complex Variable – Integration	
5	Contour integrals, Cauchy-Goursat theorem (without proof), Cauchy integral	
	formula (without proof), Liouville's theorem and Maximum-Modulus theorem	9
	(without proof); Taylor's series, Zeros of analytic functions, Singularities,	
	Laurent's series; Residues, Cauchy residue theorem (without proof), Evaluation of	
	definite integral involving sine and cosine, Evaluation of certain improper integrals	
	using the Bromwich contour.	

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

Course Outcomes:

The students will be able to:

Learn the methods for evaluating multiple integrals and their applications to different physical problems.

Understand different techniques to solve first and second order ordinary differential equations with its formulation to address the modelling of systems and problems of engineering sciences.

Learn different tools of differentiation and integration of functions of a complex variable that are used with various other techniques for solving engineering problems.

Apply different types of transformations between two 2- dimensional planes for analysis of physical or engineering problems.

Learning Resources:

- 1. Reena Garg, Chandrika Prasad, Advanced Engineering Mathematics, Khanna Publishers.
- 2. Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons.
- 3. Michael Greenberg, Advanced Engineering Mathematics, Pearson.
- 4. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers.
- 5. Kanti B. Dutta, Mathematical Methods of Science and Engineering, Cenage Learning.
- 6. Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi.
- 7. E. L. Ince, Ordinary Differential Equations, Dover Publications.
- 8. J. W. Brown and R. V. Churchill, Complex Variables and Applications, Mc-Graw Hill.

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

Course Code : ES-CS201	Category: Engineering Science Courses		
Course Title: Programming for Problem Solving	Semester : Second		
L-T-P : 3-0-0	Credit:3		
Pre-Requisites:			

Detailed contents

Unit 1: Introduction to Programming (4 lectures)

Introduction to components of a computer system (disks, memory, processor, where a program is stored and executed, operating system, compilers etc.) - (1 lecture).

Idea of Algorithm: steps to solve logical and numerical problems. Representation of Algorithm:

Flowchart/Pseudocode with examples. (1 lecture)

From algorithms to programs; source code, variables (with data types) variables and memory locations, Syntax and Logical Errors in compilation, object and executable code- (2 lectures)

Unit 2: Arithmetic expressions and precedence (2 lectures)

Unit 3: Conditional Branching and Loops (6 lectures)

Writing and evaluation of conditionals and consequent branching (3 lectures)

Iteration and loops (3 lectures)

Unit 4: Arrays (6 lectures)

Arrays (1-D, 2-D), Character arrays and Strings

Unit 5: Basic Algorithms (6 lectures)

Searching, Basic Sorting Algorithms (Bubble, Insertion and Selection), Finding roots of equations, notion of order of complexity through example programs (no formal definition required)

Unit 6: Function (5 lectures)

Functions (including using built in libraries), Parameter passing in functions, call by value, Passing arrays to functions: idea of call by reference

Unit 7: Recursion (4 -5 lectures)

Recursion, as a different way of solving problems. Example programs, such as Finding Factorial, Fibonacci series, Ackerman function etc. Quick sort or Merge sort.

Unit 8: Structure (4 lectures)

Structures, Defining structures and Array of Structures

Unit 9: Pointers (2 lectures)

Idea of pointers, Defining pointers, Use of Pointers in self-referential structures, notion of linked list (no implementation)

Unit 10: File handling (only if time is available, otherwise should be done as part of the lab)

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

Course Outcomes

The student will learn

To formulate simple algorithms for arithmetic and logical problems.

To translate the algorithms to programs (in C language).

To test and execute the programs and correct syntax and logical errors.

To implement conditional branching, iteration and recursion.

To decompose a problem into functions and synthesize a complete program using divide and conquer approach.

To use arrays, pointers and structures to formulate algorithms and programs.

To apply programming to solve matrix addition and multiplication problems and searching and sorting problems.

To apply programming to solve simple numerical method problems, namely rot finding of function, differentiation of function and simple integration.

Learning Resources:

- 1. R. S. Salaria, Computer Concepts and Programming in C, Khanna Publishers
- 2. Byron Gottfried, Schaum's Outline of Programming with C, McGraw-Hill
- 3. E. Balaguruswamy, Programming in ANSI C, Tata McGraw-Hill
- 4. Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice Hall of India

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

Category: Engineering Science Courses		
Semester : Second		
Credit:2		

The laboratory should be preceded or followed by a tutorial to explain the approach or algorithm to be implemented for the problem given.

Tutorial 1: Problem solving using computers:

Lab1: Familiarization with programming environment

Tutorial 2: Variable types and type conversions:

Lab 2: Simple computational problems using arithmetic expressions

Tutorial 3: Branching and logical expressions:

Lab 3: Problems involving if-then-else structures

Tutorial 4: Loops, while and for loops:

Lab 4: Iterative problems e.g., sum of series

Tutorial 5: 1D Arrays: searching, sorting:

Lab 5: 1D Array manipulation

Tutorial 6: 2D arrays and Strings

Lab 6: Matrix problems, String operations

Tutorial 7: Functions, call by value:

Lab 7: Simple functions

Tutorial 8 &9: Numerical methods (Root finding, numerical differentiation, numerical integration):

Lab 8 and 9: Programming for solving Numerical methods problems

Tutorial 10: Recursion, structure of recursive calls

Lab 10: Recursive functions

Tutorial 11: Pointers, structures and dynamic memory allocation

Lab 11: Pointers and structures

Tutorial 12: File handling:

Lab 12: File operations

Laboratory Outcomes

To formulate the algorithms for simple problems

To translate given algorithms to a working and correct program

To be able to correct syntax errors as reported by the compilers

To be able to identify and correct logical errors encountered at run time

To be able to write iterative as well as recursive programs

To be able to represent data in arrays, strings and structures and manipulate them through a program

To be able to declare pointers of different types and use them in defining self-referential structures.

To be able to create, read and write to and from simple text files.

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

Course Code : HM-HU201	Category: Humanities and Social Sciences including Management courses
Course Title : English	Semester : Second
L-T-P : 2-0-0	Credit:2
Pre-Requisites:	

Detailed contents

1. Vocabulary Building

- 1.1 The concept of Word Formation: Compounding, Backformation, Clipping, Blending.
- 1.2 Root words from foreign languages and their use in English
- 1.3 Acquaintance with prefixes and suffixes from foreign languages in English to form derivatives.
- 1.4 Synonyms, antonyms, and standard abbreviations: Acronyms

2. Basic Writing Skills

- 2.1 Sentence Structures & Types: Simple, Compound, Complex
- 2.2 Use of phrases and clauses in sentences: Transformation of sentences, active, passive, narration
- 2.3 Importance of proper punctuation
- 2.4 Creating coherence: Arranging paragraphs & Sentences in logical order
- 2.5 Creating Cohesion: Organizing principles of paragraphs in documents
- 2.6 Techniques for writing precisely

3. Identifying Common Errors in Writing

- 3.1 Subject-verb agreement
- 3.2 Noun-pronoun agreement
- 3.3 Misplaced modifiers
- 3.4 Articles
- 3.5 Prepositions
- 3.6 Redundancies
- 3.7 Clichés

4. Nature and Style of sensible Writing

- 4.1 Describing
- 4.2 Defining
- 4.3 Classifying
- 4.4 Providing examples or evidence
- 4.5 Writing introduction and conclusion

5. Writing Practices

- 5.1 Comprehension
- 5.2 Précis Writing
- 5.3 Essay Writing
- 5.4 Business Letter, Cover Letter & CV; E-mail

Addendum

Some examples of English words with foreign roots

Greek Root/Affix	Examples
Anti	Antisocial, antiseptic

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology (Applicable from the academic session 2018-2019)

, FF	e deddeffile Session 2010-2017)
Auto	Automatic, autograph
Anthropos	Anthropology, philanthropy
Bio	Biography
Chronos	Time
Di	Dilemma
Bio	Biology
Biblio	Bibliography
Chron	Chronology
Cracy	Contradiction
Geo	Geology
Hyper	Hyperactive
Mania	Kleptomania
Mega	Megaserial
Eu	Eulogy, euphoria
Geo	Geology
Graph	autograph, photograph
Hetero	Heterogeneous
Hyper	Hyperactive
Нуро	hypodermic, hypoglycemia
Macro	Macrocosm
Mega	megalomania
Micro	microcosm

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology (Applicable from the academic session 2018-2019)

(Applicable from the academic session 2018-2019) Mono			
Monarch			
Panorama			
Pathetic			
Hydrophobia			
Pseudopodia			
oolyglot			
Telephone			
Theology, theist			
Examples			
Audible			
Beneficial			
abbreviate, brief			
Circulate			
Contradict			
Credible			
Diction			
- eminine			
Internet, interval			
Magnificient			
Malnutrition			
multinational			
Novel			
Multiple, multiplex			
. ,			

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

	le academic session 2016-2019)
Pre	Previous, predicate
Re	Redo, rewind
Scrib	Carintura
SCHO	Scripture
Spect	Spectator
_	
Trans	Transport
Trails	Transport
Uni	Unity
Omni	Omnipotent
0	ommpotent
Carrai	Camalainala
Semi	Semicircle
Sub	Subway
	,
somnus	Insomnia,
Super	Superman
Super	Superman
Sym	Sympathy
scribe	Describe, scribble(write
	illegibly), inscribe
T	
Trans	Transform
Un	Unnecessary
	,
Uni	Universal
OIII	Ulliversal

Learning Resources:

- (i) Kulbushan Kumar, R S Salaria, Effective Communication Skills, Khanna Publishing House, Delhi.
- (ii) Practical English Usage. Michael Swan. OUP. 1995.
- (iii) Remedial English Grammar. F.T. Wood. Macmillan.2007
- (iv) On Writing Well. William Zinsser. Harper Resource Book. 2001
- (v) Study Writing. Liz Hamp-Lyons and Ben Heasly. Cambridge University Press. 2006.
- (vi) Communication Skills. Sanjay Kumar and PushpLata. Oxford University Press. 2011.
- (vii) Exercises in Spoken English. Parts. I-III. CIEFL, Hyderabad. Oxford University Press
- (viii) Universal English Prof. Prasad Kataria Publications, 2019.
- (ix) "Communication Skills for Professionals"-Nira Konar, Prentice Hall of India 2nd edition, New Delhi, 2011
- (x) Gajendra Singh Chauhan, Smita Kashiramka and L. Thimmesha. Functional English. Cengage, 2019.

Course Outcomes

The student will acquire basic proficiency in English including reading and listening comprehension, writing and speaking skills.

(Formerly West Bengal University of Technology)

1st Year Curriculum Structure for B.Tech courses in Engineering & Technology

(Applicable from the academic session 2018-2019)

Course Code : HM-HU291	Category: Humanities and Social Sciences including Management courses
Course Title : Language Laboratory	Semester : Second
L-T-P : 0-0-2	Credit:1
Pre-Requisites:	

1)	Honing 'Listening Skill' and its sub skills through Language Lab Audio device;	3P
2)	Honing 'Speaking Skill' and its sub skills	2P
3)	Helping them master Linguistic/Paralinguistic features (Pronunciation/Phonetics/	
	Voice modulation/ Stress/ Intonation/ Pitch &Accent) of connected speech	2P
4)	Honing 'Conversation Skill' using Language Lab Audio -Visual input;	
	Conversational Practice Sessions (Face to Face / via Telephone, Mobile phone &	
	Role Play Mode)	2P
5)	Introducing 'Group Discussion' through audio -Visual input and acquainting them	
	with key strategies for success	2P
6)	G D Practice Sessions for helping them internalize basic Principles	
	(turn- taking, creative intervention, by using correct body language, courtesies &	
	other soft skills) of GD	4P
7)	Honing 'Reading Skills' and its sub skills using Visual / Graphics/	
	Diagrams /Chart Display/Technical/Non Technical Passages	
	Learning Global / Contextual / Inferential Comprehension;	2P
8)	Honing 'Writing Skill' and its sub skills by using	
	Language Lab Audio -Visual input; Practice Sessions	2P

Course Outcomes

• The student will acquire basic proficiency in English including reading and listening comprehension, writing and speaking skills.

Annexure-I

MOOCs for B. Tech Honours

Maulana Abul Kalam Azad University of Technology, West Bengal

(Formerly West Bengal University of Technology)

BF- 142, Sector-I, Salt Lake, Kolkata- 700064, India

Notice

1st May, 2018

MOOCs for B.Tech Honours

(Applicable from the session 2018-2019)

Preamble

All India Council for Technical Education (AICTE) has introduced Model Curriculum for Bachelor of Technology programme with 160 credits in the entire programme of 4 years, and additional 20 credits will be required to be done for the degree of Bachelor of Technology with Honours. These additional 20 credits will have to be acquired with online courses (MOOCs) as per AICTE. So students will have to complete additional 20 credits through MOOCs within 4 years of time. This creates an excellent opportunity for students to acquire the necessary skill set for employability through massive online courses where the rare expertise of world famous experts from academics and industry are available. Maulana Abul Kalam Azad University of Technology, West Bengal (MAKAUT, WB) has thus decided to introduce AICTE model curriculum for its B.Tech Programmes and suggest baskets for MOOCs available year wise for the four-year long B.Tech programme from the sessions 2018-2019. The basket for MOOCs will be a dynamic one, as courses keep on updating with time. Few essential skill sets required for employability are also identified year wise by MAKAUT, WB. For MOOCs platforms where examination or assessment is absent (like SWAYAM) or where certification is costly (like Coursera or edX), faculty members of the Institutes are to audit the courses and prepare the examination question papers, for the courses undertaken by the students of respective Institutes, so that MAKAUT, WB can conduct examination for the course. The total of 20 credits that is required to be attained for B.Tech Honours degree are distributed over four years in the following way:

For first year : 8 credits
For second year : 4 credits
For third year : 4 credits
For fourth year : 4 credits

A student of first year has to cover courses from at least three skills:

- 1. Computer Programing with Python / R
- 2. Soft skill
- 3. Ethics

Courses are * marked in the above areas

If a student is unable to cover the credits assigned for the first year, he/she can do these courses in either of the subsequent years, but he/she has to choose the courses from the basket of MOOCs announced by MAKAUT,WB from time to time. The same rule will be applicable for the other years of the programme.

The basket for MOOCs for the 1st year B. Tech for the session 2018-2019 are made available herewith.

By order.

MOOCs for First Year, Engineering and Technology

Sl. No	Course	Provider	Duration	Credits	Name of University / Institution	
1.	Presentation Skills: Designing Presentation Slides	Coursera *	4 weeks	1	Tomsk State University	
2.	Effective Problem-Solving and Decision- Making	Coursera	4 weeks	1	University of California	
3.	Communication in the 21st Century Workplace	Coursera *	4 weeks	1	University of California	
4.	Psychology at Work	Coursera *	6 weeks	2	University of Western Australia	
5.	Critical Thinking & Problem Solving	EdX *	3 weeks	3	Rochester Institute of Technology	
6.	Successful Career Development	Coursera	7 weeks	2	University System of Georgia	
7.	Working in Teams: A Practical Guide	edX	4 weeks	1	University of Queensland	
8.	Communication theory: bridging academia and practice	Coursera	9 weeks	3	Higher School of Economics	
9.	Speaking Effectively	NPTEL *	8 weeks	3	Indian Institute of Technology, Kharagpur	
10.	Introduction to Philosophy	Coursera	5 weeks	1	University of Edinburgh	
11.	Moralities of Everyday Life	Coursera	6 weeks	2	Yale University	
12.	Introduction to Logic	Coursera *	10 weeks	3	Stanford University	
13	Write Professional Emails in English	Coursera *	5 weeks	2	Georgia Institute of Technology	
14	Technical Writing	Coursera	5 weeks	1	Moscow Institute of Physics and Technology	
15	Learn to Program: The Fundamentals	Coursera	7 weeks	2	University of Toronto	
16	The Science of Everyday Thinking	edX	12 weeks	4	University of Queensland	
17	Introduction to Problem Solving and Programming	NPTEL	12 weeks	4	NPTEL	
18	The Science of Well Being	Coursera	6 weeks	2	Yale University	
19	Developing Soft Skills and Personality	NPTEL	8 weeks	3		
20	Programming Basics	edX	9 weeks	3	IIT Bombay	
21	Introduction to Python: Absolute Beginner	EdX *	5 weeks	2	Microsoft	
22	Inferential Statistics	Coursera *	7 weeks	2	University of Amsterdam	
23	Linear Regression and Modelling	Coursera	4 weeks	1	Duke University	
24	Foundation of Data Structures	edX	6 weeks	2	IIT Bombay	
25	Introduction to Logic	NPTEL	12 weeks	4	NPTEL	
26	Introduction to Probability and Data	Coursera *	5 weeks	1	Duke University	
27	Ethics	NPTEL *	12 weeks	4		
28	Science, Technology and Society	NPTEL	12 weeks	4		
29	Creating Innovation	Coursera	6 weeks	2	Macquarie University	
30	Ethical Leadership Through Giving Voice to Values	Coursera *	4 weeks	2	University of Virginia	
31	Creativity, Innovation, and Change	Coursera *	6 weeks	2	Pennsylvania State University	
32	Interpersonal Communication for Engineering Leaders	Coursera	4 weeks	1	Rice University	

33	Learn to Program: The Fundamentals	Coursera *	7 weeks	3	University of Toronto		
34	Introduction to Mathematical Thinking	Coursera *	9 weeks	3	Stanford University		
35	The Science of Everyday Thinking	edX	12 weeks	4	University of Queensland		
36	A Life of Happiness and Fulfillment	Coursera	6 weeeks	2	Indian School of Business		
37	Model Thinking	Coursera	12 weeks	4	University of Michigan		
38	Introduction to Philosophy: God,	edX	12 weeks	4	MIT		
	Knowledge, and Consciousness	Cuzi	12 Weeks	•			
39	Soft skills	NPTEL *	12 Weeks	4	IIT Roorkee		
40	Developing Soft Skills and Personality	NPTEL *	8 weeks	3	IIT Kanpur		
41	Indian Fiction in English	NPTEL	12 Weeks	4	IIT Madras		
42	Development of Sociology in India	NPTEL	4 Weeks	1	IIT Kanpur		
43	Intellectual Property	NPTEL	12 Weeks	4	IIT Madras		
44	Essential Statistics for Data Analysis using Excel	EdX *	Self Paced	3	Microsoft		
45	Ethics and Law in Data and Analytics	edX	Self Paced	4	Microsoft		
46	Climate Change Mitigation in Developing Countries	Coursera *	6 weeks	3	University of Cape town		
47	Web Design for Everybody (Basics of Web Development and Coding) Specialization	Coursera	15weeks	4	University of Michigan		
48	Ecology: Ecosystem Dynamics and Conservation	Coursera	5 weeks	1	American Museum of Natural History, Howard Hughes Medical Institute		
49	Environmental Studies: A Global Perspective	EdX *	Self Paced	4	Curtin University		
50	Introduction to Computer Science and Programming Using Python	edX *	Self Paced	4	MIT, USA		
51	Statistics and R	edX *	Self Paced	4	Harvard University		
52	Introduction to Programming in C	Coursera *	4 weeks	4	Duke University		
53	Java Programming: Solving Problems with Software	Coursera	4 weeks	4	Duke University		
54	Grammar and Punctuation	Coursera	4 weeks	1	University of California		
55	How to Write an Essay	Coursera *	5 weeks	1	University of California, Berkeley		
56	Conversational English Skills	EdX *	10 weeks	3	Tsinghua University		
57	Advanced Writing	Coursera *	4 weeks	1	University of California, Irvine		
58	Speak English Professionally: In Person, Online & On the Phone	Coursera *	5 weeks	1	Georgia Institute of Technology		
59	English for Science, Technology, Engineering, and Mathematics	Coursera	5 weeks	1	University of Pennsylvania		
60	English Composition	edX	8 weeks	3	Arizona State University		
61	Take Your English Communication Skills to the Next Level	Coursera *	4 weeks	1	Georgia Institute of Technology		

Guidelines regarding Mandatory Induction Program for the new students

Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology)
BF- 142, Sector-I, Salt Lake, Kolkata- 700064, India

Date: 06.12.2017

Maulana Abul Kalam Azad University of Technology, West Bengal Guidelines regarding Induction Programme for the new students

(As per Model Curriculum for 1st Year UG degrees courses in Engineering & Technology, November 2017)

To be followed from the 2018-19 academic session

Preamble: Engineering education has evolved globally in a continuous manner to address the twin needs of industry and society. It is now an accepted fact that the institutions imparting technical education should aspire to create manpower who will possess strong technical knowledge and skill, have leadership qualities and be a team player, capable of coming up with innovative solutions and be alive to societal and community concerns.

The aim of the Induction Programme is to acclimatize the students to the environment of their engineering institution, give them a flavour of the exciting new world of education that they are entering, provide them with mentoring schemes, and make them aware of their neighbourhood, society and people. This will allow them to evolve as well rounded individuals.

The following schedule is laid down by the University to implement the three week long Induction Programme:

Week 1	1 st Half	Day 1	Overall introduction of the new students to the			
,,, co n 1	1 11411		Institution, its different Departments & Faculty			
			Members			
			Wellibers			
	2 nd Half	Day 1	(a) Assignment of faculty mentors to the new			
			students			
			(b) Assessment and allotment for mentoring by senior students preferably from the second year			
	2 hrs	Day 2, 3, 4, 5	Lectures by eminent personalities on different areas			
			such as (a) Introduction to Engineering (b) Various			
			topics of science and technology			
			(c) Innovation and entrepreneurship			
			(d) Creative and performing arts (e) Social issues			
			(a) crown and perferming and (c) a countries			
	2 hrs.	Day 2, 3, 4, 5	Participation in Games, Yoga, Meditation etc.			
	2 hrs	Day 2, 3, 4, 5	Visit to the different Departments of the Institute			
W 1 0 (A11	21					
Week 2 (All	2hrs		Scheduled class lectures as per time table.			
Days)						
	2hrs		Students to be conducted through proficiency modules			
			to be prepared by respective Colleges for ascertaining			
			English skills & Computer knowledge of the students			

			and to prepare a report on the same
	2hrs		Participation in Games, Sports, Yoga, Creative arts etc.
Week 3	2hrs		Scheduled class lectures as per time table
		Day 1	Visits to neighbourhood locations
		Day 2	Visits to natural spots in adjoining areas to understand the effect of nature on society
		Day 3	Visits to Science Museum / laboratories
		Day 4	
		Day 5	Visits to NGOs

Any other activity, as deemed fit by the Director/Principal of the affiliated Colleges, may be proposed and discussed with the Academic Coordinator of the University, by sending email to the following address: academics.makaut@gmail.com.

Note: 1) If necessary, networking may be established with NGOs to facilitate the different components and aspects of the Induction Programme.

Mandatory Additional Requirement for earning B. Tech Degree

Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology)
BF- 142, Sector-I, Salt Lake, Kolkata- 700064, India

Maulana Abul Kalam Azad University of Technology, West Bengal BF-142, Sector-I, Saltlake

Notice

Mandatory Additional Requirement for earning B.Tech Degree

Addressing the needs of the industry and the society: Globally, engineering education systems have continuously evolved, in order to address the needs of the industry and the society. It is becoming imperative that every University should create opportunities for the students to inculcate attributes, which are not restricted only to engineering knowledge and acumen. Industry needs professionals who can work successfully in teams, who have leadership qualities, who are alive to social and community needs and who can bring innovation and creativity to their work and who are also digitally proficient. Hence, in order to prepare its students to match these multiple requirements, MAKAUT, WB has created a unique mechanism of awarding 100 Activity Points over and above the academic grades. It is planned that the students at MAKAUT, WB will be able to reap benefits from these activities at their own pace and comfort. It is expected that by the time MAKAUT, WB's students reach their Final Year, they would have developed themselves so well both through their studies in the respective technological field and through their active participation in the co-curricular and extra-curricular activities as also through SAWYAM based learning activities that they would be well-prepared for contributing to building the India and the world of their dreams.

The additional requirement applies to: Every student, who is admitted to the 4 years B.Tech program from the academic year 2018-19 onwards, is required to earn minimum 100 Activity Points in addition to the required academic grades, for getting MAKAUT,WB's B.Tech degree. Similarly, it is mandatory to earn 75 Activity Points, in addition to the academic grades, for getting B.Tech degree by a student (Lateral Entry) who is admitted to the B.Tech program from the academic year 2018-19 onwards. (*Please see Table 1 for details.*) [Lateral Entry students will have a multiplying factor of 1.33 to bring uniformity in score].

Level of Entry in B.Tech Course	Total duration for earning Points	Minimum Points
1st Year from the academic year 2018-19 onwards	1 st to 4 th Year	100
2 nd Year from the academic year 2018-19 onwards	2 nd to 4 th Year	75
(Lateral Entry)		

Table – I

For existing Students (except students in the 4th year): Every student, who is admitted to the 4 years B.Tech program prior to the academic year 2018-19, is required to earn minimum number of Activity Points as per Table II in addition to the required academic grades, for getting MAKAUT,WB's B.Tech degree.

Current Semester	Total Points to be earned During the full course
2 nd	100
4 th	75
6 th	50

Table -II

These points must be earned on the basis of active participation in co-curricular and extracurricular activities spanning through all the semesters of study. Every student may choose, as per his/her liking, activities in order to achieve the mandatory points (as per Table-III, depending on his/her entry level), before becoming eligible for award of the Degree. These activities can be spread over the years, as per convenience of the student.

Notes:

- Current 4th year students who are going to sit for Final Semester examination in May-June, 2018 are outside the preview of this Mandatory Additional Requirement
- Every student shall participate in the co-curricular and extra-curricular activities and produce documentary proof to the designated Faculty Members appointed by the Head of Department / Principal / Director in the respective college. Thereby the student should earn the required Points before *her* she appears for his/ her Final Examinations.
- A student's result of his/her Final Examinations will be withheld until he/she completes the minimum Activity Points by the end of his/her B.Tech Program.
- In every semester, every student is required to prepare a file containing documentary proofs of activities, done by him / her. This file will be duly verified and Activity Points will be assigned by the teachers as appointed above, at the end of every semester.
- The college will form a 3 members committee and finalize the Activity Points for each student before entering them into the Online Point Entry System (at the URL, as specified by the COE of the University).
- Every student has to earn at least 100 activity points. The points students has earned will be reflected in the student's marksheet.
- Activity points earned by Lateral Entry students will be multiplied by 1.33.

Table III provides a List of Activity Heads and Sub-Activity Heads along with their capping of the Activity Points that can be earned by the students during the entire B.Tech duration.

Sl. No.	Name of the Activity	Points	Maximum Points Allowed
1.	MOOCS (SWAYAM/NPTEL/Spoken Tutorial) (per course)	20	40
2.	Tech Fest/Teachers Day/Freshers Welcome		
	Organizer	5	10
	Participants	3	6
5.	Rural Reporting	5	10
6.	Tree Plantation (per tree)	1	10
7.	Participation in Relief Camps	20	40
8.	Participation in Debate/Group Discussion/ Tech quiz	10	20
9.	Publication of Wall magazine in institutional level (magazine/article/internet)	10	20
10.	Publication in News Paper, Magazine & Blogs	10	20
11.	Research Publication (per publication)	15	30
12.	Innovative Projects (other than course curriculum)	30	60
13.	Blood donation	8	16
	Blood donation camp Organization	10	20
15.	Participation in Sports/Games		
	College level	5	10
	University Level	10	20
	District Level	12	24
	State Level	15	30
	National/International Level	20	20
21.	Cultural Programme (Dance, Drama, Elocution, Music etc.)	10	20
22.	Member of Professional Society	10	20
23.	Student Chapter	10	20
24.	Relevant Industry Visit & Report	10	20
25.	Photography activities in different Club(Photography club, Cine Club, Gitisansad)	5	10
26.	Participation in Yoga Camp (Certificate to be submitted)	5	10
27.	Self-Entrepreneurship Programme	20	20
28.	Adventure Sports with Certification	10	20
29.	Training to under privileged/Physically challenged	15	30
30.	Community Service & Allied Activities	10	20

Suggestions from the College Principals will be considered to append in the above Table-III.

Sd/-

Registrar(Acting) MAKAUT,WB

Maulana Abul Kalam Azad University of Technology, West Bengal Record of Activities for Mandatory Additional Requirement

Colleg	ge Name (College Code):						Departmen	nt:				
Stude	nt Name:	Univ	University Roll No:				Registration No:					
Sl No	SI No Activity		Points Allowed Allowed Sem1		_	Points Earned						
51 110	Activity	Poi	M. Poir Allo	Sem1	Sem2	Sem3	Sem4	Sem5	Sem6	Sem7	Sem8	Total
1	MOOCS (SWAYAM/NPTEL/Spoken Tutorial) per course											
	For 12 weeks duration	20	40									
	For 8 weeks duration	16	1 40									
2	Tech Fest/Teachers Day/Freshers Welcome											
	Organizer	5	10									
	Participants	3	6									
3	Rural Reporting	5	10									
4	Tree Plantation and up keeping (per tree)	1	10									
5	Participation in Relief Camps	20	40									
6	Participation in Debate/Group Discussion/ Tech quiz	10	20									
7	Publication of Wall magazine in institutional level (magazine/article/internet)		•									
	Editor	10	20									
	Writer	6	12									
8	Publication in News Paper, Magazine & Blogs	10	20									
9	Research Publication (per publication)	15	30									
10	Innovative Projects (other than course curriculum)	30	60									
11	Blood donation	8	16									
11	Blood donation camp Organization	10	20									

Maulana Abul Kalam Azad University of Technology, West Bengal Record of Activities for Mandatory Additional Requirement

	o Activity	Points	x. ss	Points Earned								
Sl No			Max. Points Allowed	Sem1	Sem2	Sem3	Sem4	Sem5	Sem6	Sem7	Sem8	Total
12	Participation in Sports/Games				•	•	•	•		•		
	College level	5	10									
	University Level	10	20									
	District Level	12	24									
	State Level	15	30									
	National/International Level	20	20									
13	Cultural Programme (Dance, Drama, Elocution, Music etc.)	10	20									
14	Member of Professional Society	10	20									
15	Student Chapter	10	20									
16	Relevant Industry Visit & Report	10	20									
17	Photography activities in different Club(Photography club, Cine Club, Gitisansad)	5	10									
18	Participation in Yoga Camp (Certificate to be submitted)	5	10									
19	Self-Entrepreneurship Programme	20	20									
20	Adventure Sports with Certification	10	20									
21	Training to under privileged / Differently abled	15	30									
22	Community Service & Allied Activities	10	20									
	Total Points											
	Signature of Mentor											
	Signature of HOD											

*Please abide strictly to the Notes at the end of the Notice by Registrar, MAKAUT, WB regarding Mandatory Additional Requirement for earning B.Tech Degree

^{*} Annexure-I is to be retained in the Institute records with all documentary proofs of activities (to be verified by the University as and when required).

Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology) Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

Namo	THEORY						
		Semester: 3 rd					
		Maximum Marks: 100					
Duru	TVI	THE PARTY OF THE P					
Teacl	hing Scheme Ex	xamination Scheme					
	8	lid Semester Exam: 15	Marks				
			Marks				
		0 -	Marks				
	Credit Points: 4+1 End Semester Exam: 70 M						
	Objectiv	ve:					
1.	To understand the structure and properties of		cal circuits.	networks			
	and sources.	71	,	•			
2.	To apply different mathematical tools & technique	niques for analyzing ele	ctrical netv	vorks.			
3.	To apply circuit analysis techniques to simpl						
4.	To solve problems of electrical circuits.	•					
	Pre-Requi	isite					
1.	Basic Electrical Engineering (ES-EE-101)						
2.	Mathematics (BS-M-102, Bs-M202)						
Unit	Content		Hrs	Marks			
1	Introduction: Continuous & Discrete, Fixed	d & Time varying, Line					
	and Nonlinear, Lumped and Distributed, Pas						
	and systems. Independent & Dependent source						
	Sinusoidal, Square, Saw tooth signals						
2	Graph theory and Networks equations: (Concept of Tree, Branc	h, 4				
	Tree link, Incidence matrix, Tie-set matrix a	and loop currents, Cut s	et				
	matrix and node pair potentials. Duality, Solu	ution of Problems					
3	Coupled circuits: Magnetic coupling, Pola						
	induced voltage, Concept of Self and Mutua		nt				
	of coupling, Modeling of coupled circuits, So						
4	Laplace transforms: Impulse, Step & Sin						
	RC, and RLC circuits. Transient analysis of d						
	with and without initial conditions. Concept		m				
	and its application. Solution of Problems with						
5	Fourier method of waveform analysis: Fo						
	Transform (in continuous domain only).	ut					
	analysis, Solution of Problems						
6	Network Theorems: Formulation of net		e 8				
	transformation, Loop variable analysis, Node	•					
	Network theorem: Superposition, Thevenin's						
	power transfer theorem. Millman's theorem						
	three phase unbalanced circuit analysis. Solut	tion of Problems with D					
	& AC sources.						

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

	7	Two port networks analysis: Open circuit Impedance & Short circuit	4				
		and their inter relations. Driving point impedance & Admittance.					
		Solution of Problems					
Ī	8	Filter Circuits: Analysis and synthesis of Low pass, High pass, Band	4				
		pass, Band reject, All pass filters (first and second order only) using					
		operational amplifier. Solution of Problems					

Text books:

- 1. Networks & Systems, Ashfaq Husain, Khanna Book Publishing, New Delhi
- 2. Networks and Systems, D. Roy Chowdhury, New Age International Publishers
- 3. Network Analysis and Synthesis, C.L. Wadhwa, New Age International Publishers
- 4. Circuit and Networks: Analysis and synthesis, A. Sudhakar & S.S. Palli4th edition. Tata Mc Graw Hill Education Pvt. Ltd.
- 5. Circuit theory, Dr. Abhijit Chakrabarty, Dhanpat Rai & Co Pvt. Ltd.

Reference books

- 1. Network Analysis, M.E. Valkenburg, Pearson Education.
- 2. Fundamental of Electric circuit theory, D. Chattopadhay & P.C. Rakshit, S. Chand
- 3. Engineering Circuit Analysis, W.H. Hyat, J.E. Kemmerly & S.M. Durbin, The Mc Graw Hill Company.
- 4. Problems and Solutions of Electric Circuit Analysis, R.K. Mehta & A.K. Mal, CBS, New Delhi

Course Outcome: After completion of this course, the learners will be able to

- 1. describe different type of networks, sources and signals with examples.
- 2. explain different network theorems, coupled circuit and tools for solution of networks.
- 3. apply network theorems and different tools to solve network problems.
- 4. select suitable techniques of network analysis for efficient solution.
- 5. estimate parameters of two-port networks.
- 6. design filter circuits.

Special Remarks:

The above mentioned outcomes are not limited. Institute may redefine outcomes based their program educational objective.

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

Name	e of the course	Electric circuit theory						
Cour	se Code:PC-EE391	Semester: 3 rd						
Dura	tion: 6 months	Maximum marks:100						
	hing Scheme	Examination scheme:						
	ry: Nil	Continuous Internal Assessment:40						
	rial: Nil	External Assessment: 60						
	tical: 2 hrs/week							
Crea	it Points:1							
	Laboratory F	y neriments:						
1.	Transient response of R-L and R-C network							
1.	Transfelt response of R 2 and R C network	ix. Simulation with Software & naraware						
2.	Transient response of R-L-C series and pa	rallel circuit: simulation with software &						
	hardware							
3.		ittance (Y) parameter of two-port network:						
	simulation & hardware.							
4.	Frequency response of LP and HP filters:	simulation & hardware.						
5.	Frequency response of BP and BR filters:	simulation & hardware						
<i>J</i> .	rrequency response of Br and BK liners.	Simulation & Haluwart.						
6.	Generation of Periodic, Exponential, Sinusoidal, Damped Sinusoidal, Step, Impulse,							
	Ramp signal using MATLAB in both discrete and analog form.							
	1 0 0 0							
7.	Determination of Laplace transform and Inverse Laplace transform using MATLAB.							
8.	Amplitude and Phase spectrum analysis of different signals using MATLAB.							
9.	Verification of Network theorems using software & hardware							

Course Outcome: After completion of this course, the learners will be able to

- 1. determine
 - transient response of different electrical circuit
 - parameters of two port network
 - frequency response of filters.
 - Laplace transform and inverse Laplace transform
- 2. generate different signals in both discrete and analog form
- 3. analyze amplitude and phase spectrum of different signals.
- 4. verify network theorems.
- 5. construct circuits with appropriate instruments and safety precautions.
- 6. Simulate electrical circuit experiments using suitable software.

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

Special Remarks: The above-mentioned outcomes are not limited. Institute may redefine outcomes based their program educational objective.

Name	e of the course	ANALOG ELECTRONICS			
Cour	se Code: PC-EE 302	Semester: 3 rd			
Dura	tion: 6 months	Maximum Marks: 1	00		
Teac	hing Scheme	Examination Schem	e		
	ry: 3 hrs/week	Mid Semester Exam:	15 Marks		
Tutor	ial: 0 hr/week	Assignment & Quiz:	10 Marks		
Practi	ical: 2 hrs/week	Attendance:	05 Marks		
Credi	t Points: 3+1	End Semester Exam:	70 Marks		
Obje	ctive:	1			
1.	To understand the structure and properties	s of different compone	ents of analog e	electronics.	
2.	To explain principle of operation of anal				
3.	To understand the application of operation	<u> </u>			
4.	To solve problems of analog electronic	•	ts		
5.	To analyze amplifiers, oscillators and other				
Pre-F	Requisite	<u> </u>			
1.	Physics (10+2)				
Unit	Content		Hrs	Marks	
1	Filters & Regulators: Review of half	wave and full wave	4		
	rectifier, Capacitor filters, π -section filter				
	and shunt voltage regulator, percentage re				
2	BJT circuits: Structure and I-V characte		8		
	as a switch. BJT as an amplifier: small-s	· · · · · · · · · · · · · · · · · · ·			
	circuits, current mirror; common-emitte				
	common-collector amplifiers; Small signs	al equivalent circuits,			
	high-frequency equivalent circuits				
3	MOSFET circuits: MOSFET st	ructure and I-V	8		
	characteristics. MOSFET as a switch				
	amplifier: small-signal model and biasir	ng circuits, common-			
	source, common-gate and common-dra	in amplifiers; small			
	signal equivalent circuits - gain, input an				
	trans-conductance, high frequency equiva	lent circuit.			
4	Feed back amplifier & Oscillators: Co		5		
	Negative & Positive feedback, Voltage/				
	feedback, Berkhausen criterion, Colpit, I				
	Wien bridge, & Crystal oscillators.				
5	Operational amplifier: Ideal OPAMP, I		5		
	Constant current source (Current mirror	, · · · · · · · · · · · · · · · · · · ·			
	CMRR, Open & closed loop circuits, im	-			
	loop (positive & negative), inverting				
	amplifiers, Voltage follower/Buffer circui	ts.			

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

6	Application of Operational amplifiers: Adder, Integrator & Differentiator, Comparator, Schmitt Trigger, Instrumentation Amplifier, Log & Antilog amplifier, Trans-conductance multiplier, Precision rectifier, Voltage to current & Current to	5	
7	voltage converter. Power amplifier: Class A, B, AB, C, Conversion efficiency	2	
8	Multivibrator: Monostable, Bistable multivibrator, Monostable & Astable operation using 555 timer.	2	
9	Special function circuits: VCO & PLL	2	

Text books:

- 1. Malvino—Electronic Principles, 6/e, TMH
- 2. Nagrath, Electronics: Analog and Digital, PHI, 2004
- 3. Mottershed, Electronics Devices & Circuits, Wiley Eastern
- 4. Millman & Halkias Integrated Electronics, Tata McGraw Hill.
- 5. Gayakwad R.A -- OpAmps and Linear IC's, 4/e, Pearson-PHI
- 6. Franco—Design with Operational Amplifiers & Analog Integrated Circuits , 3/e,TMH
- 7. Coughlin and Drisscol Operational Amplifier and Linear Integrated Circuits Pearson Education Asia.
- 8. A.K. Maini, Analog Electronics, Khanna Publishing House, 2019
- 9. L.K. Maheswari, Analog Electronics, Laxmi Publications

Reference books

- 1. Nagchoudhuri, Microelectronic Devices, 1/e, Pearson Education, 2001
- 2. Natarajan, Microelectronics: Analysis & Design, 1/e 2005, TMH
- 3. Maheshwari and Anand, Analog Electronics, PHI
- 4. Boyle'stead, Nashelsky: & Kishore, Electronic Devices & Circuit theory, 1/e, PHI/Pearson.
- 5. Millman & Halkias: Basic Electronic Principles; TMH.
- 6. Tobey & Grame Operational Amplifier: Design and Applications, Mc Graw Hill.

Course Outcome: After completion of this course, the learners will be able to

- 1. describe analog electronic components and analog electronics circuits
- 2. explain principle of operation of analog electronic components, filters, regulators and analog electronic circuits.
- 3. compute parameters and operating points of analog electronic circuits.
- 4. determine response of analog electronic circuits.
- 5. distinguish different types amplifier and different types oscillators based on application.
- 6. construct operational amplifier based circuits for different applications.

Special Remarks:

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

The above mentioned outcomes are not limited. Institute may redefine outcomes based their program educational objective.

Name	e of the course	Analog electronic laboratory	
Cour	rse Code:PC-EE392	Semester: 3rd	
Dura	tion: 6 months	Maximum marks:100	
Teac	hing Scheme	Examination scheme:	
Theo	ry: Nil	Continuous Internal Assessment: 40	
Tutor	rial: Nil	External Assessment: 60	
Practi	ical: 2 hrs/week	Credit Points:1	
	Laboratory E		
1.	Study of ripple and regulation characterist	ics of full wave rectifier with and without	
	capacitor filter.		
2.	Study of Zener diode as voltage regulator.		
3.	Study of characteristics curves of B.J.T & F.E.T.		
4.		implifier & study of it's gain & Bandwidth.	
5.	Study of class A, C & Push-Pull amplifiers		
6.	Study of timer circuit using NE555 & conf	figuration for monostable & astable and	
	bistable multivibrator		
7.	Study of Switched Mode Power Supply & construction of a linear voltage regulator using		
	regulator IC chip		
8.	Construction of a simple function generator using IC.		
9.	Realization of a V-to-I & I-to-V converter	<u> </u>	
10.	Realization of a Phase Locked Loop using	Voltage Controlled Oscillator (VCO).	
11.	Study of D.A.C & A.D.C.		

Course Outcome: After completion of this course, the learners will be able to

- 1. determine
 - characteristics of full wave rectifier with filter and without filter
 - characteristics of BJT and FET
 - characteristics of Zener diode as voltage regulator
 - characteristics of class A, C and push pull amplifiers
- 2. verify function of DAC and ADC
- 3. construct
 - function generator using IC
 - R-C coupled amplifier
 - linear voltage regulator using regulator IC chip.
 - timer circuit using 555 for monostable, astable and multistable multivibrator.
 - V to I and I to V converter with Op amps.

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

- phase locked loop using Voltage Controlled Oscillator (VCO)
- 4. work in a team
- 5. validate theoretical learning with practical

Special Remarks: The above-mentioned outcomes are not limited. Institute may redefine outcomes based their program educational objective.

Name	of the course ELECTRO MAGNETI	C FIELD	THEORY	
	Course Code: PC-EE 303 Semester: 3rd			
Duration: 6 months Maximum Marks: 100				
Teach	Teaching Scheme Examination Scheme			
	ry: 3 hrs/week Mid Semester Exam: 1	5 Marks		
Tutor	ial: 0 hr/week Assignment & Quiz: 1	0 Marks		
Pract	ical: 0 hrs/week Attendance: 0:	5 Marks		
Credi	t Points: 3 End Semester Exam: 7	0 Marks		
	Objective:			
1.	To understand the basic mathematical tools to deal with Electromag	gnetic field	Problem.	
2.	To understand properties and application of Electric and magnetic f	ield.		
3.	To analyze electromagnetic wave propagation			
4.	To solve problem related to Electromagnetic field.			
	Pre-Requisite			
1.	Basic Electrical Engineering (ES-EE-101)			
2.	Mathematics (BS-M-102, Bs-M202)			
3.	Physics (BS-PH 101)			
Unit	Content	Hrs	Marks	
1	Introduction: Co-ordinate systems and transformation, Cartesian	4		
	coordinates, Circular cylindrical coordinates, Spherical			
	coordinates & their transformation. Differential length, area and			
	volume in different coordinate systems. Solution of problems		 	
2	Introduction to Vector calculus: DEL operator, Gradient of a	4		
	scalar, Divergence of a vector & Divergence theorem, Curl of a			
	vector & Strokes theorem, Laplacian of a scalar, Classification of			
3	vector fields, Helmholtz's theorem. Solution of problems Electrostatic field: Coulomb's law, field intensity, Gauss's law,	8		
3	Electric potential and Potential gradient, Relation between E and	δ		
	V, an Electric dipole and flux lines. Energy density in			
	electrostatic field. Boundary conditions: Dielectric-dielectric,			
	Conductor –dielectric, Conductor-free space. Poisson's and			
	Laplace's equation, General procedure for solving Poisson's and			
	Laplace's equation. Solution of problems			
4	Magneto static fields: Biot- savart law, Ampere's circuit law,	8		
'		3	ı	
	Magnetic flux density, Magnetic static and Vector potential,			

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

	Magnetisation in material, Magnetic boundary condition,		
	Inductor and Inductances, Magnetic energy, Force on magnetic		
	material. Solution of problems		
5	Electromagnetic fields: Faraday's law, Transformer and	6	
	motional emf, Displacement current, Maxwell's equations, Time		
	varying Potential, Time harmonic fields. Solution of problems		
6	Electromagnetic wave propagation: Wave equation, Wave	6	
	propagation in lossy dielectric, Plane waves in loss less dielectric,		
	Plane wave in free space, Plane wave in good conductor, Skin		
	effect, Skin depth, Power & Poynting vector, Reflection of a		
	plane wave at normal incidence, reflection of a plane wave at		
	oblique incidence, Polarisation. Solution of problems		
7	Transmission line: Concept of lump & distributed parameters,	4	
	Line parameters, Transmission line equation & solutions,		
	Physical significance of solutions, Propagation constants,		
	Characteristic impedance, Wavelength, Velocity of propagation.		
	Solution of problems		

Text books:

- 1. Elements of Electromagnetic, Mathew N.O. Sadiku, 4th edition, Oxford university press.
- 2. Engineering Electromagnetic, W.H. Hyat & J.A. Buck, 7th Edition, TMH
- 3. Theory and problems of Electromagnetic, Edminister, 2nd Edition, TMH
- 4. Electromagnetic field theory fundamentals, Guru & Hizroglu, 2nd edition, Cambridge University

Reference books

Course Outcome: After completion of this course, the learners will be able to

- 1. relate different coordinate systems for efficient solution of electromagnetic problems.
- 2. describe mathematical s tools to solve electromagnetic problems.
- 3. explain laws applied to electromagnetic field.
- 4. apply mathematical tools and laws to solve electromagnetic problems.
- 5. analyze electromagnetic wave propagation
- 6. estimate transmission line parameters

Special Remarks:

The above mentioned outcomes are not limited. Institute may redefine outcomes based their program educational objective.

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

Namo	e of the course	ENGINEERING MI	ECHANICS	
Cour	se Code: ES-ME 301	Semester: 3rd		
Dura	tion: 6 months	Maximum Marks: 1	00	
Teac	hing Scheme	Examination Schem	e	
Theor	ry: 3 hrs/week	Mid Semester Exam:	15 Marks	
Tutor	rial: 0 hr/week	Assignment & Quiz:	10 Marks	
Practi	ical: 0 hrs/week	Attendance:	05 Marks	
Credi	t Points: 3	End Semester Exam:	70 Marks	
Obje	ctive:			
1.	To understand the basic mathematical to	ols to deal with the phy	sical bodies.	
2.	To learn different mathematical technique	s to analyze physical b	odies.	
2.	To learn analysis techniques of rigid bodi	ies.		
2.	To solve problem of general motion.			
Pre-F	Requisite			
1.	Physics (BS-PH-101)			
2.	Mathematics (BS-M102, BS-M202)			
Unit	Content		Hrs	Marks
1	Introduction to vectors and tensor	s and co-ordinate	5	
	systems			
	Introduction to vectors and tensors and	-		
	Vector and tensor algebra; Indical nota			
	anti-symmetric tensors; Eigenvalues and I	Principal axes.		
2	Three-dimensional Rotation		4	
	Three-dimensional rotation: Euler's t			
	formulation and Euler angles; Coordina	ite transformation of		
	vectors and tensors.			
3	Kinematics of Rigid Body		6	
	Kinematics of rigid bodies: Dentition and			
	body; Rigid bodies as coordinate systems			
	a rigid body, and its rate of change; Dist			
	and three dimensional rotational motion;			
	velocity to find orientation; Motion relati	ive to a rotating rigid		
4	body: Five term acceleration formula.			
4	Kinetics of Rigid Bodies		5	
	Kinetics of rigid bodies: Angular mome	-		
	Inertia tensor: Dentition and computation	-		
	and axes of inertia, Parallel and perpendi	icular axes theorems;		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

	Mass mamont of inartic of armmetrical hadias evilindar		
	Mass moment of inertia of symmetrical bodies, cylinder,		
	sphere, cone etc., Area moment of inertia and Polar moment of		
	inertia, Forces and moments; Newton-Euler's laws of rigid		
	body motion.		
5	Free Body Diagram (1 hour)	1	
	Free body diagrams; Examples on modelling of typical		
	supports and joints and discussion on the kinematic and kinetic		
	constraints that they impose.		
6	General Motion	9	
	Examples and problems. General planar motions. General 3-D		
	motions. Free precession, Gyroscopes, Rolling coin.		
7	Bending Moment	5	
	Transverse loading on beams, shear force and bending moment		
	in beams, analysis of cantilevers, simply supported beams and		
	overhanging beams, relationships between loading, shear force		
	and		
	bending moment, shear force and bending moment diagrams.		
8	Torsional Motion	2	
	Torsion of circular shafts, derivation of torsion equation, stress		
	and deformation in circular and hollow shafts.		
9	Friction	3	
	Concept of Friction; Laws of Coulomb friction; Angle of		
	Repose; Coefficient of friction.		

Text books:

- 1. J. L. Meriam and L. G. Kraige, "Engineering Mechanics: Dynamics", Wiley, 2011.
- 2. M. F. Beatty, "Principles of Engineering Mechanics", Springer Science & Business Media, 1986.
- 3. Manoj K. Harbola, "Engineering Mechanics", Cengage Learning India Pvt. Ltd, 2018
- 4. D.S. Bedi & M.P. Poonia, "Engineering Mechanics", Khanna Publishing House, 2019
- 5. R.S. Khurmi, "Engineering Mechanics", S.Chand Publications
- 6. R.K. Bansal, "Engineering Mechanics", Laxmi Publications

Course Outcome: After completion of this course, the learners will be able to

- 1. explain the co-ordinate system, principle of three dimensional rotation, kinematics and kinetics of rigid bodies.
- 2. elaborate the theory of general motion, bending moment, torsional motion and friction.
- 3. develop free body diagram of different arrangements.

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

- 4. solve problems with the application of theories and principle of motion, friction and rigid bodies.
- 5. analyze torsional motion and bending moment.

Special Remarks:

The above mentioned outcomes are not limited. Institute may redefine outcomes based their program educational objective.

Nam	Name of the course MATHEMATICS-III				
Cour	se Code: BS- M 301	Semester: 3rd	nester: 3rd		
Dura	tion: 6 months	Maximum Marks: 1	ım Marks: 100		
Teac	hing Scheme	Examination Schem	e		
Theo	ry: 3 hrs/week	Mid Semester Exam:	15 Marks		
Tutor	rial: 0 hr/week	Assignment & Quiz:	10 Marks		
Pract	ical: 0 hrs/week	Attendance:	05 Marks		
Credi	t Points: 3	End Semester Exam:	70 Marks		
Obje	ctive:				
1.	To understand Probability theory required	l an Electrical Engineer	r to apply in pr	ofession.	
2.	To understand numerical methods to so				
3.	To understand basics of Z transform to	solve engineering prob	olems.		
Pre-I	Requisite				
1.	Mathematics (10+2)				
Unit	Content		Hrs	Marks	
1	Probability:				
	Basic Probability Theory: Classical				
	limitations. Axiomatic definition. Some e				
	i) P(O)=0, ii) 0≤P(A)≤1, iii) P(A')=1-		1		
	symbols have their usual meanings. Fre	quency interpretation			
	of probability.				
	Addition rule for 2 events (proof) & its ex				
	2 events (statement only). Related pr		3		
	probability & Independent events. Exter				
	events (pair wise & mutual independe				
	Rule. Examples. Baye's theorem (statem	ent only) and related			
	problems.				
	Random Variable & Probability Distribut				
	Definition of random variable. Continuou				
	random variables. Probability density fund	ction & probability	2		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

mass function f	for single variable only. Distribution function es (without proof). Examples. Definitions of Variance, properties & examples.		
distributions and distributions: U related problem	nt discrete distributions: Binomial & Poisson and related problems. Some important continuous Jniform, Exponential, Normal distributions and ms. Determination of Mean & Variance for son & Uniform distributions only.	2	
	in numerical computation: Truncation and ors, Fixed and floating-point arithmetic		
Interpolation: Lagrange's and	Newton forward/backward interpolation.	5	
	egration: Trapezoidal rule, Simpson's 1/3 rule corresponding error terms.	3	
Gauss eliminat	ntion of a system of linear equations: ion method, Matrix inversion, LU Factorization -Seidel iterative method.	6	
1	ntion of Algebraic equation: hod, Regula-Falsi method, Newton-Raphsor	4	
method, Runge	ation of ordinary differential equation: Euler's A-Kutta methods, Predictor-Corrector inite Difference method.	6	
sequences, Z-ti	presentation of sequence, Basic operations or ransforms, Properties of Z-transforms, Change ing property, Inverse Z-transform, Solution of	:	
	ation, Region of convergence.		

Text books:

- 1. Lipschutz S., and Lipson M.L.: Probability (Schaum's Outline Series), TMH.
- 2. C.Xavier: C Language and Numerical Methods.
- 3. Dutta & Jana: Introductory Numerical Analysis.
- 4. J.B.Scarborough: Numerical Mathematical Analysis.
- 5. Jain, Iyengar, & Jain: Numerical Methods (Problems and Solution).

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

6. Hwei P Hsu, "Signal and system", (Schaum's Outline Series), Mc Graw Hill education.

Reference books

- 1. Balagurusamy: Numerical Methods, Scitech.
- 2. R.S. Salaria: Numerical Methods, Khanna Publishing House.
- 3. S.S. Sashtry: Numerical Methods, PHI
- 4. Baburam: Numerical Methods, Pearson Education.
- 5. N. Dutta: Computer Programming & Numerical Analysis, Universities Press.
- 6. Soumen Guha & Rajesh Srivastava: Numerical Methods, OUP.
- 7. Srimanta Pal: Numerical Methods, OUP.

Course Outcome: After completion of this course, the learners will be able to

- 1. explain basics of probability theories, rules, distribution and properties of Z transform
- 2. describe different methods of numerical analysis.
- 3. solve numerical problems based on probability theories , numerical analysis and Z transform
- 4. apply numerical methods to solve engineering problems.
- 5. solve engineering problems using z transform and probability theory.

Special Remarks:

The above-mentioned outcomes are not limited. Institute may redefine outcomes based their program educational objective.

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

Nan	ne of the course	Numerical Methods laboratory		
Cou	rse Code: PC-CS 391	Semester: 3 rd		
Dur	Duration: 6 months Maximum marks:100			
Tea	ching Scheme	Examination scheme:		
The	ory: Nil	Continuous Internal Assessment:40		
Tuto	orial: Nil	External Assessment: 60		
Prac	Practical: 2 hrs/week			
Cred	Credit Points:1			
	Laboratory E	Experiments:		
1.	Assignments on Newton forward /backwar	rd, Lagrange's interpolation.		
2.	Assignments on numerical integration using	ng Trapezoidal rule, Simpson's 1/3 rule,		
	Weddle's rule.			
3.	Assignments on numerical solution of a system of linear equations using Gauss			
	elimination and Gauss-Seidel iterations			
4.	Assignments on numerical solution of Algebraic Equation by Regular-falsi and Newton			
	Raphson methods.			
5.	Assignments on ordinary differential equation: Euler's and Runga-Kutta methods.			
6.	Introduction to Software Packages: Matlab	Introduction to Software Packages: Matlab / Scilab / Labview / Mathematica.		

Course Outcome: After completion of this course, the learners will be able to

- 1. solve
 - problems with Newton forward /backward, Lagrange's interpolation
 - problems of numerical integration using Trapezoidal rule, Simpson's 1/3 rule, Weddle's rule
 - problems to find numerical solution of a system of linear equations using Gauss elimination and Gauss-Seidel iterations.
 - problems to find numerical solution of Algebraic Equation by Regularfalsi and Newton Raphson methods.
 - ordinary differential equation by Euler's and Runga-Kutta methods.
- 2. find appropriate numerical methods to solve engineering problems.
- 3. use software package to solve numerical problems.

Special Remarks:

The above-mentioned outcomes are not limited. Institute may redefine outcomes based their program educational objective.

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

Name	e of the course	BIOLOGY FOR ENGI	NEERS	
	Course Code:BS- 301 Semester: 3rd			
	Duration: 6 months Maximum Marks: 100			
Teac	Teaching Scheme Examination Scheme			
	ry: 3 hrs/week	Mid Semester Exam: 15	Marks	
	rial: 0 hr/week	Assignment & Quiz: 10	Marks	
Pract	ical: 0 hrs/week	-	Marks	
Credi	t Points: 3	End Semester Exam: 70	Marks	
Obje	ctive:			
1.	To introduce modern biology with an	emphasis on evolution o	f biology	as a multi-
	disciplinary field.		. 1 . 1	
2.	To make students aware of application		ipies in b	iology and
D., I	engineering robust solution inspired by bi	ological examples.		
1.	Requisite NIL			
Unit	Content		Hrs	Marks
Om	Introduction		1115	Marks
	Purpose: To convey that Biology is a	s important a scientific		
1	discipline as Mathematics, Physics and 0	-	2	
1	fundamental differences between scien		2	
	drawing a comparison between eye and	· ·		
	aircraft. Mention the most exciting as			
	independent scientific discipline. Why w			
	Discuss how biological observations of 1			
	major discoveries. Examples from Brown			
	of thermodynamics by referring to the	original observation of		
	Robert Brown and Julius Mayor. These	examples will highlight		
	the fundamental importance of observ	ations in any scientific		
	inquiry			
	Classification:			
	Purpose: To convey that classification <i>per</i>		_	
	all about. The underlying criterion,		3	
	biochemical or ecological be highlighted			
2	at phenomenological level. A comm			
	hierarchy Classification. Discuss class	` '		
	cellularity- Unicellular or	multicellular (b)		
	ultrastructureprokaryotes or eucaryotes.	(c) energy and Carbon		
	utilization -Autotrophs, heterotrophs,	aminatalia miaatali-		
	lithotropes (d) Ammonia excretion –			
	ureotelic (e) Habitata- acquatic or to	errestriai (e) Moiecular		

Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology) Syllabus for B. Tech in Electrical Engineering

	(Applicable from the dedection Session 2010 2017)		
	taxonomy- three major kingdoms of life. A given organism can		
	come under different category based on classification. Model		
	organisms for the study of biology come from different groups.		
	E.coli, S.cerevisiae, D. Melanogaster, C. elegance, A. Thaliana,		
	M. musculus.		
	Biomolecules		
	Purpose: To convey that all forms of life has the same building	4	
3	blocks and yet the manifestations are as diverse as one can	7	
3			
	imagine. Molecules of life. In this context discuss monomeric		
	units and polymeric structures. Discuss about sugars, starch and		
	cellulose. Amino acids and proteins. Nucleotides and DNA/RNA.		
	Two carbon units and lipids.		
	Macromolecular analysis:		
	Purpose: To analyze biological processes at the reductionistic	5	
4	level. Proteins- structure and function. Hierarch in protein		
	structure. Primary secondary, tertiary and quaternary structure.		
	Proteins as enzymes, transporters, receptors and structural		
	elements.		
	Metabolism		
	Purpose: The fundamental principles of energy transactions are the	4	
_		4	
5	same in physical and biological world. Thermodynamics as		
	applied to biological systems. Exothermic and endothermic versus		
	endergonic and exergonic reactions. Concept of Keq and its		
	relation to standard free energy. Spontaneity. ATP as an energy		
	currency. This should include the breakdown of glucose to CO2 +		
	H2O (Glycolysis and Krebs cycle) and synthesis of glucose from		
	CO2 and H2O (Photosynthesis). Energy yielding and energy		
	consuming reactions. Concept of Energy charge.		
	Microbiology		
	Concept of single celled organisms. Concept of species and	3	
6	strains. Identification and classification of microorganisms.	2	
	Microscopy. Ecological aspects of single celled organisms.		
	Sterilization and media compositions. Growth kinetics.		
	Immunology	<i>-</i>	
	Purpose: How does the immune system work? What are the	5	
7	molecular and cellular components and pathways that protect an		
	organism from infectious agents or cancer? This comprehensive		
	course answers these questions as it explores the cells and		
	molecules of the immune system.		
	Immunology- Self vs Non-self, pathogens, human immune system,		
	antigen-antibody reactions.		
	Information Transfer		
1	Purpose: The molecular basis of coding and decoding genetic	4	
8	information is universal. Molecular basis of information transfer.		
	DNA as a genetic material. Hierarchy of DNA structure- from		
	single stranded to double helix to nucleosomes. Concept of genetic		
	single shanded to double nema to indicessomes. Concept of genetic		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

	(Applicable from the academic session 2016-2019)		
	code. Universality and degeneracy of genetic code. Define gene in		
	terms of complementation and recombination.		
	proliferation • metastasis • cell proliferation • cell death • cell •D		
	Cancer biology		
	Purpose: A basic understanding of cancer biology and treatment.		
	The course is not designed for patients seeking treatment guidance	5	
9	– but it can help to understand how cancer develops and provides a		
	framework for understanding cancer diagnosis and treatment. —cell		
	Identification of the major types of cancer worldwide. Description		
	of how genes contribute to the risk and growth of cancer. List and		
	description of the ten cellular hallmarks of cancer. Definition of		
	metastasis, and identification of the major steps in the metastatic		
	process. Description of the role of imaging in the screening,		
	diagnosis, staging, and treatments of cancer. Explanation of how		
	cancer is treated.		
	Techniques in bio physics		
10	Purpose: Biophysics is an interdisciplinary science that applies	3	
	approaches and methods traditionally used in physics to study		
	biological phenomena. The techniques including microscopy,		
	spectroscopy, electrophysiology, single-molecule methods and		
	molecular modeling		
	Stem cell		
	Purpose: Stem cells and derived products offer great promise for	2	
11	new medical treatments. Learn about stem cell types, current and		
	possible uses, ethical issues.		
	positive data, content toures.		

Text / References:

- N. A. Campbell, J. B. Reece, L. Urry, M. L. Cain and S. A. Wasserman, "Biology: A global approach", Pearson Education Ltd, 2014.
- 2. E. E. Conn, P. K. Stumpf, G. Bruening and R. H. Doi, "Outlines of Biochemistry", John Wiley and Sons, 2009.
- 3. D. L. Nelson and M. M. Cox, "Principles of Biochemistry", W.H. Freeman and Company, 2012.
- 4. G. S. Stent and R. Calendar, "Molecular Genetics", Freeman and company, 1978.
- 5. L. M. Prescott, J. P. Harley and C. A. Klein, "Microbiology", McGraw Hill Higher Education, 2005.
- 6. Lewis J. Kleinsmith. "Principles of cancer biology", Pearson, 2016

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering
(Applicable from the academic session 2018-2019)

Course Outcome: After completion of this course, the learners will be able to

- 1. describe with examples the biological observations lead to major discoveries.
- 2. explain
 - the classification of kingdom of life
 - the building blocks of life
 - different techniques of bio physics used to study biological phenomena.
 - the role of imaging in the screening, diagnosis, staging, and treatments of cancer.
- 3. identify DNA as a genetic material in the molecular basis of information transfer
- 4. analyze biological processes at the reductionistic level.
- 5. apply thermodynamic principles to biological systems.
- 6. identify microorganisms.

Special Remarks:

The above mentioned outcomes are not limited. Institute may redefine outcomes based their program educational objective.

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

Name	e of the course	INDIAN CONSTOT	TUTION	
	se Code: MC-EE 301	Semester: 3rd		
	tion: 6 months	Maximum Marks: 1	00	
Teac	hing Scheme	Examination Schem	e	
	ry: 3 hrs/week	Mid Semester Exam:	15 Marks	
Tutor	rial: 0 hr/week	Assignment & Quiz:	10 Marks	
Pract	ical: 0 hrs/week	Attendance:	05 Marks	
Credi	t Points: 0	End Semester Exam:	70 Marks	
Obje	ctive:			
1.	To have basic knowledge about Indian C	Constitution.		
2.	To understand the structure and functioning		ocal self-gover	nment.
3.	To understand the structure, jurisdiction			
Pre-I	Requisite		- •	
1.	NIL			
Unit	Content		Hrs	Marks
1	Indian Constitution:		5	
	Sources and constitutional history, F	eatures: Citizenship,		
	Preamble, Fundamental Rights and	Duties, Directive		
	Principles of State Policy			
2	Union government and its administration	on:	10	
	Structure of the Indian Union: Federal	alism, Centre- State		
	relationship, President: Role, power an	d position, PM and		
	Council of ministers, Cabinet and Cen	tral Secretariat, Lok		
	Sabha, Rajya Sabha.			
	State government and its administratio			
	Governor: Role and Position, CM and Co	-		
	State Secretariat: Organisation, Structure	and Functions		
		1 0	10	
3	Supreme court: Organization of suprem		10	
	the court, independence of the court, juris	salction and power of		
	supreme court. High court: Organization of high cou	irt procedure of the		
	court, independence of the court, jurisd			
	supreme court.	netion and power of		
	Subordinate courts: constitutional pro	vision structure and		
	jurisdiction.	vision, structure una		
	National legal services authority, Lok a	dalats, family courts		
	gram nyayalays.	animi, courts,		
	Public interest litigation (PIL): meaning	g of PIL, features of		
	PIL, scope of PIL, principle of PIL, gui	-		
	PIL	and the walling		
4	Local Administration:		10	
L				I

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

District's Administration head: Role and Importance,	
Municipalities: Introduction, Mayor and role of Elected	
Representative, CEO of Municipal Corporation, Pachayati raj:	
Introduction, PRI: Zila Pachayat, Elected officials and their	
roles, CEO Zila Pachayat: Position and role, Block level:	
Organizational Hierarchy (Different departments), Village	
level: Role of Elected and Appointed officials, Importance of	
grass root democracy.	

Text books:

1. Indian polity, M, Laxmikanth, MC Graw Hill education, 5th Edition.

Reference books

1. DD Basu, "Introduction to the constitution of India", 21st Edition, Lexis Nexis Books Publication ltd, India

Course Outcome: After completion of this course, the learners will be able to

- 1. describe
 - different features of Indian constitution..
 - power and functioning of Union, state and local self-government.
 - structure, jurisdiction and function of Indian Judiciary.
 - basics of PIL and guideline for admission of PIL.
 - Functioning of local administration starting from block to Municipal Corporation.
- 2. identify authority to redress a problem in the profession and in the society.

Special Remarks:

The above mentioned outcomes are not limited. Institute may redefine outcomes based their program educational objective.

(Formerly West Bengal University of Technology)
Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

Semester-IV

Name of the course		ELECTRIC MACHINE-I		
Cours	e Code: PC-EE-401	Semester: 4th		
Durat	ion: 6 months	Maximum Marks: 100		
Teach	ing Scheme	Examination Scheme		
	Theory: 3 hrs/week Mid Semester Exam: 15 Marks			
	ial: 0 hr/week	Assignment & Quiz: 1	0 Marks	
	cal: hrs/week		5 Marks	
Credit	Points: 3	End Semester Exam: 7	70 Marks	
Objec				
1.	To review the concept of magnetic fields and			
2.	To learn the principle of production of electro		ue.	
3.	To learn the basic principle of operation of Do			
4.	To learn the principle of operation and charac			
5.	To learn the principle of operation, connection			
6.	To acquire problem solving skills to solve pro	blems of DC machines a	and Transformer	S
Pre-R	equisite			
1.	Basic Electrical Engineering (ES-EE-101)			
2.	Electric Circuit Theory (PC-EE-301)			
3.	Electromagnetic Field Theory (PC-EE-303)		1	
Unit	Content		Hrs	Marks
1	Magnetic fields and magnetic circuits:			
	Review of magnetic circuits - MM			
	inductance; review of Ampere Law an			
	Visualization of magnetic fields produced	•	3	
	a current carrying coil - through air and th			
	of iron and air; influence of highly perme	eable materials on the		
	magnetic flux lines.			
2	Electromagnetic force and torque:			
	B-H curve of magnetic materials; flux			
	characteristic of magnetic circuits; li			
	magnetic circuits; energy stored in the m	_	_	
	as a partial derivative of stored energy wi		5	
	of a moving element; torque as a partial			
	energy with respect to angular position of			
	Examples - galvanometer coil, relay con			
	rotating element with eccentricity or salies	ncy		
3	DC machines:			
]	Basic construction of a DC machine,	magnetic structure		
	stator yoke, stator poles, pole-faces or	_		
	armature core, visualization of magnetic		8	
	field winding excitation with armature w	- ·		
	flux density distribution, flux per pole,			
1	Thus density distribution, thus per pole,	maucea Elvir III all		

(Formerly West Bengal University of Technology)
Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

	armature coil. Armature winding and commutation – Elementary armature coil and commutator, lap and wave windings, construction of commutator, linear commutation Derivation of back EMF equation, armature MMF wave, derivation of torque equation, armature reaction, air gap flux density distribution with armature reaction.		
4	DC machine - motoring and generation: Armature circuit equation for motoring and generation, Types of field excitations – separately excited, shunt and series. Open circuit characteristic of separately excited DC generator, back EMF with armature reaction, voltage build-up in a shunt generator, critical field resistance and critical speed. V-I characteristics and torque-speed characteristics of separately excited, shunt and series motors. Speed control through armature voltage. Losses, load testing and back-to-back testing of DC machines	7	
5	Transformers: Principle, construction and operation of single-phase transformers, equivalent circuit, phasor diagram, voltage regulation, losses and efficiency Testing - open circuit and short circuit tests, polarity test, back-to-back test, separation of hysteresis and eddy current losses Three-phase transformer - construction, types of connection and their comparative features, Parallel operation of single-phase and three-phase transformers, Autotransformers - construction, principle, applications and comparison with two winding transformer, Magnetizing current, effect of nonlinear B-H curve of magnetic core material, harmonics in magnetization current, Phase conversion - Scott connection, three-phase to six-phase conversion, Tap-changing transformers - No-load and on-load tap-changing of transformers, Three-winding transformers. Cooling of transformers.	12	

Text books:

- 1. Electrical Machines-I, P.S. Bimbhra, Khanna Publishing House (AICTE)
- 2. Electrical Machinery, P.S. Bimbhra, 7th Edition, Khanna Publishers
- 3. Electric machines, D.P. Kothari & I.J Nagrath, 3rd Edition, Tata Mc Graw-Hill Publishing Company Limited
- 4. Electrical Machines, P.K. Mukherjee & S. Chakrabarty, 2nd edition, Dhanpat Rai Publication.

.

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the good price session 2018, 2010)

(Applicable from the academic session 2018-2019)

Reference books:

- 1. Electric Machinery & Transformers, Bhag S. Guru and H.R. Hiziroglu, 3rd Edition, Oxford University press.
- 2. Electrical Machines, R.K. Srivastava, Cengage Learning
- 3. Theory of Alternating Current Machinery, Alexander S Langsdorf, Tata Mc Graw Hill Edition.
- 4. The performance and Design of Alternating Current Machines, M.G.Say, CBS Publishers & Distributors.
- 5. Electric Machinery & transformer, Irving L Koskow, 2nd Edition, Prentice Hall India

Course Outcome:

After completion of this course, the learners will be able to

- 1. describe the function of different components of magnetic circuit, DC machines and transformers
- 2. explain the principle of operation of different types of DC machines and transformers
- 3. solve numerical problems of DC machines and transformers.
- 4. estimate the parameters and efficiency of transformer.
- 5. determine the characteristics of DC machines
- 6. recommend methods to control output of DC machines.

Special Remarks (if any)

The above mentioned outcomes are not limited. Institute may redefine outcomes based their program educational objective.

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

Name	of the course	DIGITAL ELECTRONICS	<u> </u>	
Cours	e Code: PC-EE-402	Semester: 4 th		
Durat	ion: 6 months	Maximum Marks: 100		
Teach	Teaching Scheme Examination Scheme			
	y: 3 hrs/week	Mid Semester Exam: 1	5 Marks	
	al: 0 hr/week	Assignment & Quiz: 10	0 Marks	
	cal: hrs/week		5 Marks	
Credit	Points: 3	End Semester Exam: 7	'0 Marks	
Objec		1 : : 1	C T : C :	1.
1.	To learn the fundamentals of Digital systems a		n of Logic fami	lies.
2.	To learn the principle of operation of Combina			
3.	To learn the principle of operation of sequenti			
4.	To learn the principle of operation of A/D an			
5.	To learn the principle of operation of semicon		<u> </u>	ic devices.
6.	To acquire problem solving skills to solve pro	blems of Digital circuits		
	equisite			
1.	Analog Electronics (PC-EE-302)			
Unit 1	Content Fundamentals of Digital Systems and lo		Hrs	Marks
	Digital signals, digital circuits, AND, OR, and Exclusive-OR operations, Boolean a IC gates, number systems-binary, si hexadecimal number, binary arithmetic complements arithmetic, codes, error detectodes, characteristics of digital ICs, digital Schottky TTL and CMOS logic, interfaci Tri-state logic.	algebra, examples of gned binary, octal c, one's and two's ecting and correcting l logic families, TTL,	7	
2	Combinational Digital Circuits: Standard representation for logic representation, simplification of Logic fur minimization of logical functions. Don't c Multiplexer, De-Multiplexer/Decoders, BCD arithmetic, carry look ahead adder elementary ALU design, popular MSI chip comparator, parity checker/generator, cod encoders, decoders/drivers for display dev function realization.	are conditions, Adders, Subtractors, , serial adder, ALU, os, digital e converters, priority	7	
3	Sequential circuits and systems: A 1-bit memory, the circuit properties of clocked SR flip flop, J- K-T and D types for flipflops, shift registers, application serial to parallel converter, parallel to secounter, sequence generator, ripple(Asynsynchronous counters, counters design us counter IC's, asynchronous sequential counter IC's, asynchronous sequential counters.	dipflops, applications and of shift registers, derial converter, ring archronous) counters, ling flip flops, special	7	

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

	counters.		
4	A/D and D/A Converters:		
	Digital to analog converters: weighted resistor/converter, R-2R		
	Ladder, D/A converter, specifications for D/A converters,		
	examples of D/A converter, 1Cs, sample and hold circuit,		
	analog to digital converters: quantization and encoding,		
	parallel comparator A/D converter, successive approximation	7	
	A/D converter, counting A/D converter, dual slope A/D		
	converter, A/D converter using voltage to frequency and		
	voltage to time conversion, specifications of A/D converters,		
	example of A/D converter ICs.		
5	Semiconductor memories and Programmable logic devices:		
	Memory organization and operation, expanding memory size,		
	classification and characteristics of memories, sequential		
	memory, read only memory (ROM), read and write	7	
	memory(RAM), content addressable memory (CAM), charge		
	de coupled device memory (CCD), commonly used memory		
	chips, ROM as a PLD, Programmable logic		
	array, Programmable array logic, complex Programmable logic		
	devices (CPLDS), Field Programmable Gate Array (FPGA).		

Text books:

- 1. Digital Principles & Application, 5th Edition, Leach & Malvino, Mc Graw Hill Company.
- 2. Modern Digital Electronics, 4th Edition, R.P. Jain. Tata Mc Graw Hill Company Limited
- 3. Fundamental of Digital Circuits, A. Anand Kumar, 4th Edition, PHI.
- 4. Digital Electronics, R. Anand, Khanna Publishing House (2018).

Reference books:

- 1. Digital Logic Design, Morries Mano, PHI.
- 2. Digital Integrated Electronics, H. Taub & D. Shilling, Mc Graw Hill Company.
- 3. Digital Electronics, James W. Bignell & Robert Donovan, Thomson Delman Learning.
- 4. Fundamental of logic Design, Charles H. Roth, Thomson Delman Learning.

Course Outcome:

After completion of this course, the learners will be able to

- 1. describe the function of different building blocks of digital electronics, semiconductor memories and programmable logic devices.
- 2. explain the principle of operation of combinational and sequential digital circuits, A/D and D/A converter
- 3. solve numerical problems of Boolean algebra, number system, combinational & sequential digital circuits and A/D and D/A converter.
- 4. specify applications of combinational and sequential digital circuits.
- 5. determine specifications of different digital circuits.
- 6. design combinational and sequential digital circuits

(Formerly West Bengal University of Technology)
Syllabus for B. Tech in Electrical Engineering
(Applicable from the academic session 2018-2019)

Special Remarks (if any)

The above-mentioned outcomes are not limited. Institute may redefine outcomes based their program educational objective.

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

Name	of the course	ELECTRICAL & ELECTR	ONICS MEASU	REMENTS
Cours	e Code: PC-EE-403	Semester: 4th		
Durat	ion: 6 months	Maximum Marks: 100		
Teach	ing Scheme			
Theor	y: 3 hrs/week	Mid Semester Exam: 1	5 Marks	
	al: 0hr/week	Assignment & Quiz: 1	0 Marks	
	cal: hrs/week		5 Marks	
	Points: 3	End Semester Exam: 7		
Creare	End Semester Exam. 70 Warks			
Objec	tive:			
1.	To learn methods of measurement, errors in m	neasurement and its class	sification.	
2.	To learn the principle of operation of analog a			
3.	To learn the basic principle of operation of ins			
4.	To learn the principle of operation of athode		ferent sensors at	nd
	transducers.	ing obeimoscope and un	iciciii sciisois ai	.14
5.	To learn the principle of measurement of pow	ver, energy and differen	t electrical parar	neters
6.	To acquire problem solving skills to solve pro			
	equisite			
1.	Basic Electrical Engineering (ES-EE-101)			
2.	Electric Circuit Theory (PC-EE-301)			
Unit	Content		Hrs	Marks
1	Measurements:		1113	IVIAIRS
1	Method of measurement, Measurement sy	estem Classification of		
	instruments, Definition of accuracy, Precision			
	response, Error in measurement, Classification			
	effect due to shunt and series connected instru		7	
	Analog meters:		/	
	• General features, Construction, Principle o	of operation and torque		
	equation of Moving coil, Moving iron,			
	Induction instruments, Principle of operation	-		
	Thermoelectric, Rectifier type instruments, E			
	ranges and multipliers.			
2	Instrument transformer:			
	• Disadvantage of shunt and multipliers, Ac	dvantage of Instrument		
	transformers, Principle of operation of	Current & Potential		
	transformer, errors.			
	Measurement of Power:		9	
	• Principle of operation of Electrodynam	ic & Induction type		
	wattmeter, Wattmeter errors			
	Measurement of Energy:			
	• Construction, theory and application of AC	energy meter, testing		
	of energy meters.			
3	Measurement of resistance:			
	• Measurement of medium, low and high resis	stances, Megger		
	Potentiometer:	6 G	_	
	• Principle of operation and application		8	
	potentiometer, Polar and Co-ordinate typ	be AC potentiometer,		
	applications			

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

4	AC Bridges: • Measurement of Inductance, Capacitance and frequency by AC bridges Cathode ray oscilloscope (CRO): • Measurement of voltage, current, frequency & phase by oscilloscope. Frequency limitation of CRO. Sampling and storage oscilloscope, Double beam CRO. Electronic Instruments: • Advantages of digital meter over analog meters, Digital voltmeter, Resolution and sensitivity of digital meters, Digital multimeter, Digital frequency meter, Signal generator, Digital Storage oscilloscope.	7	
5	Sensors & Transducers: • Introduction to sensors & Transducers, Strain gauge, LVDT, Temperature transducers, Flow measurement using magnetic flow measurement.	4	

Text books:

- 1. A course in Electrical & Electronic Measurements & Instrumentation, A.K. Sawhney, Dhanpat Rai & sons.
- 2. Electrical Measurement & Measuring Instruments, E.W. Golding & F.C. Wides, Wheeler Publishing
- 3. Sensors & Transducers, D. Patranabis, PHI, 2nd edition.

Reference books:

- 1. Electronic Instruments, H.S. Kalsi, Tata Mc-Graw hill, 2nd Edition.
- 2. Digital Instrumentation, A.J. Bouwens, Tata Mc-Graw hill.
- 3. Modern Electronic instrumentation & Measuring instruments, A.D. Heltric & W.C. Copper, Wheeler Publication
- 4. Instrument transducers, H.K.P. Neubert, Oxford University press.
- 5. All-in One Electronics Simplified, A.K. Maini, Khanna Book Publishing Co. (2018)

Course Outcome:

After completion of this course, the learners will be able to

- 1. explain the terms accuracy, precision, resolution, speed of response, errors in measurement, loading effect
- 2. describe methods of measurement of power, energy by instruments and resistance, capacitance and inductance by bridges and potentiometer
- 3. explain the principle of operation of analog meters, instrument transformer, digital multimeter, digital voltmeter, digital frequency meter, signal generator, strain gauge, LVDT and temperature transducers

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

Applicable from the academic session 2018-2019)

(Applicable from the academic session 2018-2019)

- 4. explain the different building block, principle of operation of oscilloscope and measurement techniques of voltage, current, frequency and phase by oscilloscope
- 5. solve numerical problems related to analog meters, instrument transformer, measurement of power, energy, resistance, inductance and capacitance
- 6. specify applications of analog and digital measuring instruments, sensors and transducers

Special Remarks (if any)

The above-mentioned outcomes are not limited. Institute may redefine outcomes based their program educational objective.

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

Name	e of the course	THERMAL POWER EN	GINEERING	
Cours	Course Code:ES-EE-401 Semester: 4th			
Durat	ion: 6 months	Maximum Marks: 100		
Teach	ing Scheme	Examination Scheme		
Theor	ry: 3 hrs/week	Mid Semester Exam: 1	5 Marks	
Tutor	ial: 0 hr/week	Assignment & Quiz: 10	0 Marks	
	cal: hrs/week	Attendance: 0	5 Marks	
Credit	t Points: 3	End Semester Exam: 70) Marks	
Objec				
1.	To learn the principle of operation of different	* 1	rbines	
2.	To learn the principle of operation of IC eng			
6.	To acquire problem solving skills to solve pro	blems of boilers, turbine	es, IC engines ar	nd Gas
D -	turbines			
	equisite (25.14402.0.26.4404)			
1.	Mathematics (BS M102 & BS M201)			
Unit 1	Boilers:		Hrs	Marks
	Water Tube & Fire Tube boilers, Circulate Circulation, Critical pressure, Supe attemperators, induced draught, forced drau Fans, Boiler performance analysis and heat Systems, Environmental Protection – ESP, C Collector etc.	rheaters, Reheaters, aght and secondary air t balance. Combustion	12	
2	Collector etc. Turbines: Rotary Thermodynamic devices – Steam turbines & their classifications – Impulse & Reaction typeTurbines, Thermodynamics of compressible fluid-flow, equation and continuity – Isentropic flow throughnozzles, velocity diagram, Blade efficiency, optimum velocity ratio, multi-staging, velocity & pressurecompounding, losses in turbines, erosion of turbine blades, turbine governing, performance analysis ofturbine, Condensing system.		12	
3	IC Engines: IC Engines – classification, Analysis of a standard cycle, fuel characteristic of SI & CI Engine, Combustion, Engine performance Automotive Engine exhaust emission and their control		6	
4	Gas Turbines: Gas turbine Analysis – Regeneration - efficiency Combustion efficiency		5	

Text books:

- Engineering Thermodynamics, P.K. Nag, 6th Edition, Mc Graw Hill Education Pvt. Ltd
 Power Plant Engineering, P K Nag, 4th Edition, Mc Graw Hill Education Pvt. Ltd
- 3. Thermal Engineering , P.S. Ballaney, 25th Edition, , Khanna publishers

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering
(Applicable from the academic session 2018-2019)

4. Power Plant Engineering, Domkundwar, Arora, Dhanpat Rai & Co.

Reference books:

- 1. Thermodynamics, Cengel, 6th Edition, Tata Mc Graw-Hill Education.
- 2. Power Plant Technology ,M M Ei-Wakil 1st Edition, Tata McGraw Hill
- 3. Heat and Thermodynamics, M W Zemansky & R.H.Dittman, 8th Edition, McGraw Hill

Course Outcome:

After completion of this course, the learners will be able to

- 1. describe the function of different components of boilers. Engines and turbines
- 2. explain the principle of operation of different types of boilers, turbines, IC engines and Gas turbines.
- 3. solve numerical problems of boilers, turbines, IC engines and Gas turbines.
- 4. analyze the performance of boilers, engines and turbines.
- 5. determine efficiency of boilers, engines and turbines.
- 6. explain methods to control boiler, engines and turbines parameters.

Special Remarks (if any)

The above-mentioned outcomes are not limited. Institute may redefine outcomes based their program educational objective.

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

Name	of the course	VALUES AND ETHICS	IN PROFESSION	I
Cours	e Code: HM-EE-401	Semester: 4th		
Durat	Duration: 6 months Maximum Marks: 100			
Teach	ing Scheme	Examination Scheme		
	y: 3 hrs/week	Mid Semester Exam: 1	5 Marks	
	al: 0 hr/week	Assignment & Quiz: 10		
	cal: 0 hrs/week		5 Marks	
	Points: 3	End Semester Exam: 7		
Objec		411 1 1 1		1
1.	To inculcate Human values to grow as a respo			
2.	To instill Professional Ethics to maintain ethic	al conduct and discharge	e professional di	ities.
	equisite			
1.	Not applicable	1		
Unit	Content		Hrs	Marks
1	Human values: Morals, Values, and Ethics – Integrity –Trustworthiness – Work Ethics – Service-Learning – Civic Virtue – Respect for others – Living Peacefully – Caring – Sharing – Honesty –Courage – Value Time – Co-operation – Commitment – Empathy – Self-confidence – Spirituality- Character.		5	
2	Principles for harmony: Truthfulness – Customs and Traditions -Value Education – Human Dignity – Human Rights – Fundamental Duties – Aspirations and Harmony (I, We & Nature) – Gender Bias – Emotional Intelligence – Salovey – Mayer Model – Emotional Competencies – Conscientiousness		5	
3	Engineering ethics and social experimentation History of Ethics – Need of Engineering Engineering Ethics- Profession and Profession Moral Autonomy – Utilitarianism – Virtue Theories – Deontology- Types of Inquiry – Gilligan's Argument – Heinz's Dilemma Standard Experiments — Learning from the Managers – Consultants and Leaders – Balan Role of Codes – Codes and Experimental Natur	g Ethics – Senses of halism —Self Interest – heory – Uses of Ethical –Kohlberg's Theory – Comparison with the Past – Engineers as ced Outlook on Law – here of Engineering.	8	
4	Engineers' responsibility towards safety and risk for sustainable development: The concept of Safety – Safety and Risk – Types of Risks – Voluntary v/s Involuntary Risk – Consequences – Risk Assessment –Accountability – Liability – Reversible Effects – Threshold Levels of Risk – Delayed v/s Immediate Risk – Safety and the Engineer – Designing for Safety – Risk-Benefit Analysis-Accidents.		5	
5	Engineers' duties and rights: Concept of Duty – Professional Duties – Col for Achieving Collegiality – Senses of Loy Controversy – Professional and Individual Rig	ralty – Consensus and		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

Proprietary Information – Conflict of Interest-Ethical egoism – Collective Bargaining – Confidentiality – Gifts and Bribes – Problem solving-Occupational Crimes- Industrial Espionage- Price Fixing-Whistle Blowing.		
Global issues: Globalization and MNCs –Cross Culture Issues – Business Ethics – Media Ethics – Environmental Ethics – Endangering Lives – Bio Ethics – Computer Ethics – War Ethics – Research Ethics - Intellectual Property Rights.	5	

Text books:

- 1. Professional Ethics & Human Values, Premvir Kapoor, Khanna Publishing House, Delhi (AICTE Recommended Textbook).
- 2. A text book on professional Ethics & Human values, R.S. Naagarazan, New Age international Publishing.
- 3. Engineering Ethics, M. Govindarajan, S. Natarajan, V.S. Senthilkumar, Prentice Hall India.
- 4. Human value and professional Ethics, Jayshree Suresh, B.S. Raghvan, S. Chand Publishing

Reference books:

1. Ethics in Science and Engineering, James G. Speight & Russel Foote, Wiley.

Course Outcome:

After completion of this course, the learners will be able to

- 1. illustrate different aspects of human values, ethics, engineers' responsibility and duties
- 2. explain different principles, different theories and laws of engineering ethics and social experimentation
- 3. identify different factors in the light of Engineers' responsibility towards safety and risk
- 4. correlate ethics of different work environment.
- 5. explain the need for intellectual property rights.

Special Remarks (if any)

The above mentioned outcomes are not limited. Institute may redefine outcomes based their program educational objective.

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

Name	of the course	ENVIRONMEMTAL SCI	ENCE	
Cours	e Code: MC-EE-401	Semester: 4th		
Durat	ation: 6 months Maximum Marks: 100			
	Teaching Scheme Examination Scheme			
	,	Mid Semester Exam: 1		
		Assignment & Quiz: 10		
	·		5 Marks	
Crean	Points: 0	End Semester Exam: 7	70 Marks	
Objec	tive:			
1.	To understand the environment and its relatio	onships with human act	ivities	
2.	To be able to apply the fundamental knowled	•		SS
	environmental and health risk	8		
3.	To understand environmental laws and regula	ations to develop guide	lines and proce	edures for
	health and safety issues			
4.	To acquire the skill to solve problem related to	o environment and po	llution	
Pre-R	equisite			
1.	Basic knowledge of science			1
Unit	Content		Hrs	Marks
	Basic ideas of environment, basic concep	ots, man, society &		
	environment, their interrelationship (1L)			
	Mathematics of population growth and a	•		
	Importance of population study in environmental engineering, definition of resource, types of resource, renewable, non-			
	renewable, potentially renewable, effect of e		6	
1	population growth, Sustainable Development (0	
1	Materials balance: Steady state conservation	• •		
	system with non-conservative pollutants,			
	Environmental degradation: Natural environ			
	Flood, earthquake, Landslide-causes,			
	control/management; Anthropogenic degrad			
	cause, effects and control. Nature and sco			
	Science and Engineering (2L)			
	Elements of ecology: System, open system	em, closed system,		
	definition of ecology, species, population, con	nmunity, definition of		
	ecosystem- components types and function (1)	•		
	Structure and function of the following	•		
	ecosystem, Grassland ecosystem, Desert		6	
	ecosystems, Mangrove ecosystem (special			
2	ban); Food chain [definition and one example	e of each food chain],		
	Food web (2L)			
	Biogeochemical Cycle- definition, significa			
	different cycles with only elementary reacti	ion [Oxygen, carbon,		
	Nitrogen, Phosphate, Sulphur] (1L)	alaa Diadhaasa 10 11 1		
	Biodiversity- types, importance, Endemic spec	•		
	spot, Threats to biodiversity, Conservation of b			
	Atmospheric Composition: Troposphe	ere, Stratosphere,		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

Energy balance: Conductive and Convective heat transfer, radiation heat transfer, simple global temperature model [Earth as a black body, earth as albedo], Problems. (1L) Green house effects: Definition, impact of greenhouse gases on the global climate and consequently on sea water level, agriculture and marine food. Global warming and its consequence, Control of Global warming. Earth's heat budget. (1L) Lapse rate: Ambient lapse rate Adiabatic lapse rate, atmospheric stability, temperature inversion (radiation inversion). (2L) Atmospheric dispersion: Maximum mixing depth, ventilation coefficient, effective stack height, smokestack plumes and Gaussian plume model. (2L) Definition of pollutants and contaminants, Primary and secondary pollutants: emission standard, criteria pollutant. Sources and effect of different air pollutants Suspended particulate matter, oxides of carbon, oxides of nitrogen, oxides of sulphur, particulate, PAN (2L) Smog, Photochemical smog and London smog. Depletion Ozone layer: CFC, destruction of ozone layer by CFC, impact of other green-house gases, effect of ozone modification. (1L) Standards and control measures: Industrial, commercial and residential air quality standard, control measure (ESP. cyclone separator, bag house, catalytic converter, scrubber (ventury), Statement with brief reference). (1L)
Green house effects: Definition, impact of greenhouse gases on the global climate and consequently on sea water level, agriculture and marine food. Global warming and its consequence, Control of Global warming. Earth's heat budget.(1L) Lapse rate: Ambient lapse rate Adiabatic lapse rate, atmospheric stability, temperature inversion (radiation inversion).(2L) Atmospheric dispersion: Maximum mixing depth, ventilation coefficient, effective stack height, smokestack plumes and Gaussian plume model.(2L) Definition of pollutants and contaminants, Primary and secondary pollutants: emission standard, criteria pollutant. Sources and effect of different air pollutants Suspended particulate matter, oxides of carbon, oxides of nitrogen, oxides of sulphur, particulate, PAN (2L) Smog, Photochemical smog and London smog. Depletion Ozone layer: CFC, destruction of ozone layer by CFC, impact of other green-house gases, effect of ozone modification. (1L) Standards and control measures: Industrial, commercial and residential air quality standard, control measure (ESP. cyclone separator, bag house, catalytic converter, scrubber (ventury), Statement with brief reference). (1L)
global climate and consequently on sea water level, agriculture and marine food. Global warming and its consequence, Control of Global warming. Earth's heat budget.(1L) Lapse rate: Ambient lapse rate Adiabatic lapse rate, atmospheric stability, temperature inversion (radiation inversion).(2L) Atmospheric dispersion: Maximum mixing depth, ventilation coefficient, effective stack height, smokestack plumes and Gaussian plume model.(2L) Definition of pollutants and contaminants, Primary and secondary pollutants: emission standard, criteria pollutant. Sources and effect of different air pollutants Suspended particulate matter, oxides of carbon, oxides of nitrogen, oxides of sulphur, particulate, PAN (2L) Smog, Photochemical smog and London smog. Depletion Ozone layer: CFC, destruction of ozone layer by CFC, impact of other green-house gases, effect of ozone modification. (1L) Standards and control measures: Industrial, commercial and residential air quality standard, control measure (ESP. cyclone separator, bag house, catalytic converter, scrubber (ventury), Statement with brief reference). (1L)
marine food. Global warming and its consequence, Control of Global warming. Earth's heat budget.(1L) Lapse rate: Ambient lapse rate Adiabatic lapse rate, atmospheric stability, temperature inversion (radiation inversion).(2L) Atmospheric dispersion: Maximum mixing depth, ventilation coefficient, effective stack height, smokestack plumes and Gaussian plume model.(2L) Definition of pollutants and contaminants, Primary and secondary pollutants: emission standard, criteria pollutant. Sources and effect of different air pollutants Suspended particulate matter, oxides of carbon, oxides of nitrogen, oxides of sulphur, particulate, PAN (2L) Smog, Photochemical smog and London smog. Depletion Ozone layer: CFC, destruction of ozone layer by CFC, impact of other green-house gases, effect of ozone modification. (1L) Standards and control measures: Industrial, commercial and residential air quality standard, control measure (ESP. cyclone separator, bag house, catalytic converter, scrubber (ventury), Statement with brief reference). (1L)
Lapse rate: Ambient lapse rate Adiabatic lapse rate, atmospheric stability, temperature inversion (radiation inversion).(2L) Atmospheric dispersion: Maximum mixing depth, ventilation coefficient, effective stack height, smokestack plumes and Gaussian plume model.(2L) Definition of pollutants and contaminants, Primary and secondary pollutants: emission standard, criteria pollutant. Sources and effect of different air pollutants Suspended particulate matter, oxides of carbon, oxides of nitrogen, oxides of sulphur, particulate, PAN (2L) Smog, Photochemical smog and London smog. Depletion Ozone layer: CFC, destruction of ozone layer by CFC, impact of other green-house gases, effect of ozone modification. (1L) Standards and control measures: Industrial, commercial and residential air quality standard, control measure (ESP. cyclone separator, bag house, catalytic converter, scrubber (ventury), Statement with brief reference). (1L)
stability, temperature inversion (radiation inversion).(2L) Atmospheric dispersion: Maximum mixing depth, ventilation coefficient, effective stack height, smokestack plumes and Gaussian plume model.(2L) Definition of pollutants and contaminants, Primary and secondary pollutants: emission standard, criteria pollutant. Sources and effect of different air pollutants Suspended particulate matter, oxides of carbon, oxides of nitrogen, oxides of sulphur, particulate, PAN (2L) Smog, Photochemical smog and London smog. Depletion Ozone layer: CFC, destruction of ozone layer by CFC, impact of other green-house gases, effect of ozone modification. (1L) Standards and control measures: Industrial, commercial and residential air quality standard, control measure (ESP. cyclone separator, bag house, catalytic converter, scrubber (ventury), Statement with brief reference). (1L)
Atmospheric dispersion: Maximum mixing depth, ventilation coefficient, effective stack height, smokestack plumes and Gaussian plume model.(2L) Definition of pollutants and contaminants, Primary and secondary pollutants: emission standard, criteria pollutant. Sources and effect of different air pollutants Suspended particulate matter, oxides of carbon, oxides of nitrogen, oxides of sulphur, particulate, PAN (2L) Smog, Photochemical smog and London smog. Depletion Ozone layer: CFC, destruction of ozone layer by CFC, impact of other green-house gases, effect of ozone modification. (1L) Standards and control measures: Industrial, commercial and residential air quality standard, control measure (ESP. cyclone separator, bag house, catalytic converter, scrubber (ventury), Statement with brief reference). (1L)
plume model.(2L) Definition of pollutants and contaminants, Primary and secondary pollutants: emission standard, criteria pollutant. Sources and effect of different air pollutants Suspended particulate matter, oxides of carbon, oxides of nitrogen, oxides of sulphur, particulate, PAN (2L) Smog, Photochemical smog and London smog. Depletion Ozone layer: CFC, destruction of ozone layer by CFC, impact of other green-house gases, effect of ozone modification. (1L) Standards and control measures: Industrial, commercial and residential air quality standard, control measure (ESP. cyclone separator, bag house, catalytic converter, scrubber (ventury), Statement with brief reference). (1L)
Definition of pollutants and contaminants, Primary and secondary pollutants: emission standard, criteria pollutant. Sources and effect of different air pollutants Suspended particulate matter, oxides of carbon, oxides of nitrogen, oxides of sulphur, particulate, PAN (2L) Smog, Photochemical smog and London smog. Depletion Ozone layer: CFC, destruction of ozone layer by CFC, impact of other green-house gases, effect of ozone modification. (1L) Standards and control measures: Industrial, commercial and residential air quality standard, control measure (ESP. cyclone separator, bag house, catalytic converter, scrubber (ventury), Statement with brief reference). (1L)
pollutants: emission standard, criteria pollutant. Sources and effect of different air pollutants Suspended particulate matter, oxides of carbon, oxides of nitrogen, oxides of sulphur, particulate, PAN (2L) Smog, Photochemical smog and London smog. Depletion Ozone layer: CFC, destruction of ozone layer by CFC, impact of other green-house gases, effect of ozone modification. (1L) Standards and control measures: Industrial, commercial and residential air quality standard, control measure (ESP. cyclone separator, bag house, catalytic converter, scrubber (ventury), Statement with brief reference). (1L)
carbon, oxides of nitrogen, oxides of sulphur, particulate, PAN (2L) Smog, Photochemical smog and London smog. Depletion Ozone layer: CFC, destruction of ozone layer by CFC, impact of other green-house gases, effect of ozone modification. (1L) Standards and control measures: Industrial, commercial and residential air quality standard, control measure (ESP. cyclone separator, bag house, catalytic converter, scrubber (ventury), Statement with brief reference). (1L)
Smog, Photochemical smog and London smog. Depletion Ozone layer: CFC, destruction of ozone layer by CFC, impact of other green-house gases, effect of ozone modification. (1L) Standards and control measures: Industrial, commercial and residential air quality standard, control measure (ESP. cyclone separator, bag house, catalytic converter, scrubber (ventury), Statement with brief reference). (1L)
layer: CFC, destruction of ozone layer by CFC, impact of other green-house gases, effect of ozone modification. (1L) Standards and control measures: Industrial, commercial and residential air quality standard, control measure (ESP. cyclone separator, bag house, catalytic converter, scrubber (ventury), Statement with brief reference). (1L)
green-house gases, effect of ozone modification. (1L) Standards and control measures: Industrial, commercial and residential air quality standard, control measure (ESP. cyclone separator, bag house, catalytic converter, scrubber (ventury), Statement with brief reference). (1L)
residential air quality standard, control measure (ESP. cyclone separator, bag house, catalytic converter, scrubber (ventury), Statement with brief reference). (1L)
separator, bag house, catalytic converter, scrubber (ventury), Statement with brief reference). (1L)
Statement with brief reference). (1L)
Hydrocabora Hydrological cyclo and Natural water Dollutants of
Hydrosphere, Hydrological cycle and Natural water. Pollutants of water, their origin and effects: Oxygen demanding wastes,
pathogens, nutrients, Salts, thermal application, heavy metals,
pesticides, volatile organic compounds. (2L)
River/Lake/ground water pollution: River: DO, 5-day BOD test, Seeded BOD test, BOD reaction rate constants, Effect of oxygen 9
demanding wastes on river [deoxygenation, reaeration], COD, Oil,
Greases, pH. (2L)
4 Lake: Eutrophication [Definition, source and effect]. (1L) Ground water: Aquifers, hydraulic gradient, ground water flow
(Definition only)(1L)
Standard and control: Waste water standard [BOD, COD, Oil,
Grease], Water Treatment system [coagulation and flocculation, sedimentation and filtration, disinfection, hardness and alkalinity,
softening] Waste water treatment system, primary and secondary
treatments [Trickling filters, rotating biological contractor,
Activated sludge, sludge treatment, oxidation ponds] tertiary treatment definition. (2L)
Water pollution due to the toxic elements and their biochemical
effects: Lead, Mercury, Cadmium, and Arsenic (1L)
Environmental impact assessment, Environmental Audit, 5 Environmental laws and protection act of India, Different 3
international environmental treaty/ agreement/ protocol. (3L)

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering
(Applicable from the academic session 2018-2019)

Text books:

- 1. Environmental Studies, M.P. Poonia & S.C. Sharma, Khanna Publishing House
- 2. Introduction to Environmental Engineering and Science, G.M. Masters, Prentice-Hall of India Pvt. Ltd.,1991.

Reference books:

- 1. Environmental Chemistry, A. De, New Age International
- 2. Text Book for Environmental Studies, Erach Bharucha, UGC
- 3. Elements of Environmental Pollution Control, O.P. Gupta, Khanna Publishing House (AICTE Recommended Book).

Course Outcome:

After completion of this course, the learners will be able to

- 1 understand the natural environment and its relationships with human activities
- 2 apply the fundamental knowledge of science and engineering to assess environmental and health risk
- 3 develop guidelines and procedures for health and safety issues obeying the environmental laws and regulations
- 4 acquire skills for scientific problem-solving related to air, water, noise& land pollution.

Special Remarks (if any)

The above mentioned outcomes are not limited. Institute may redefine outcomes based their program educational objective.

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

Course	Code:PC-EE491	41.	
Course Code:PC-EE491		Semester: 4 th	
Duration: 6 months		Maximum marks:100	
Teaching Scheme		Examination scheme:	
Theory: 0 hr/week		Continuous Internal Assessment:40	
Tutorial: 0 hr/week		External Assessment: 60	
Practic	al: 2 hrs/week		
Credit !	Points:1		
	Laboratory Experiments:		
1.	Determination of the characteristics of a separately excited DC generator.		
2.	Determination of the characteristics of a DC motor		
3.	Study of methods of speed control of DC motor		
4.	Determination of the characteristics of a compound DC generator (short shunt)		
5.	Determination of speed of DC series motor as a function of load torque.		
6.	Polarity test on a single phase transformer		
7.	Determination of equivalent circuit of a single phase transformer and efficiency.		
8.	Study of different connections of three phase transformer.		
9.	Study of Parallel operation of a single phase tr	ansformers.	
10.	Determination of temperature rise and efficie	ncy of the transformer.(Back to back test)	

Course Outcome:

After completion of this course, the learners will be able to

- 1. identify appropriate equipment and instruments for the experiment.
- 2. test the instrument for application to the experiment.

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering
(Applicable from the academic session 2018-2019)

- 3. construct circuits with appropriate instruments and safety precautions
- 4. validate different characteristics of DC machine , methods of speed control of DC motor and parallel operation of the transformer
- 5. work effectively in a team

Special Remarks: The above-mentioned outcomes are not limited. Institute may redefine outcomes based their program educational objective.

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

Name of the course		DIGITAL ELECTRONICS LABORATORY	
Course Code:PC-EE492		Semester: 4 th	
Duration: 6 months		Maximum marks:100	
Teaching Scheme		Examination scheme:	
Theory: 0 hr/week		Continuous Internal Assessment:40	
Tutorial: 0 hr/week		External Assessment: 60	
Practi	cal: 2 hrs/week		
Credit	: Points:1		
	Laboratory Exp	periments:	
1.	Realization of basic gates using Universal logic gates.		
2.	Code conversion circuits- BCD to Excess-3 & vice-versa.		
3.	.4-bit parity generator & comparator circuits.		
4.	Construction of simple Decoder & Multiple	exer circuits using logic gates.	
5.	Design of combinational circuit for BCD to usingmultiplexer.	decimal conversion to drive 7-segment display	
6.	Construction of simple arithmetic circuits-	Adder, Subtractor.	
7.	Realization of RS-JK & D flip-flops using Universal logic gates.		
8.	Realization of Universal Register using JK flip-flops & logic gates.		
9.	Realization of Universal Register using multiplexer & flip-flops.		
10.	Construction of Adder circuit using Shift Register & full Adder.		
11.	Realization of Asynchronous Up/Down co	unter	
12.	Realization of Synchronous Up/Down cou	nter	
13.	Design of Sequential Counter with irregula	ar sequences.	

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

14.	Realization of Ring counter & Johnson's counter.
15.	Familiarization with A/D and D/A circuits

Course Outcome:

After completion of this course, the learners will be able to

- 1. identify appropriate equipment and instruments for the experiment
- 2. test the instruments for application to the experiment
- 3. construct decoder, multiplexer, adder and subtractor circuits with appropriate instruments and precaution
- 4. realize RS-JK and D flip flop, universal register with gates, multiplexer and flip-flops and asynchronous and synchronous up down counters
- 5. validate the operation of code conversion circuit –BCD to Excess 3 & vice versa, 4 bit parity generator & comparator circuits,
- 6. work effectively in a team

Special Remarks: The above-mentioned outcomes are not limited. Institute may redefine outcomes based their program educational objective.

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

Name of the course		ELECTRICAL & ELECTRONICS MEASUREMENT LABORATORY
Cours	e Code:PC-EE493	Semester: 4 th
Durat	ion: 6 months	Maximum marks:100
Teach	ing Scheme	Examination scheme:
Theor	y: 0 hr/week	Continuous Internal Assessment:40
Tutor	ial: 0 hr/week	External Assessment: 60
Practi	cal: 2 hrs/week	
Credit	: Points:1	
	Laboratory Exp	periments:
1.	Instrument workshop- Observe the construction of PMMC, Dynamometer, Electrothermal and	
	Rectifier type of instruments, Oscilloscope and Digital multimeter.	
2.	Calibrate moving iron and electrodynamomet	ter type ammeter/voltmeter by potentiometer.
3.	Calibrate dynamometer type wattmeter by po	otentiometer.
4.	Calibrate AC energy meter.	
5.	Measurement of resistance using Kelvin doub	ole bridge.
6.	Measurement of power using Instrument train	nsformer.
7.	Measurement of power in Polyphase circuits.	
8.	Measurement of frequency by Wien Bridge.	
9.	Measurement of Inductance by Anderson brid	dge
10.	Measurement of capacitance by De Sauty Brid	dge.
11.	Measurement of capacitance by Schering Bridge.	

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering
(Applicable from the academic session 2018-2019)

Course Outcome:

After completion of this course, the learners will be able to

- 7. identify appropriate equipment and instruments for the experiment
- 8. test the instrument for application to the experiment
- 9. construct circuits with appropriate instruments and safety precautions
- 10. evaluate and adjust the precision and accuracy of AC energy meter, moving iron and dynamometer type ammeter, voltmeter and wattmeter by potentiometer
- 11. measure voltage, current, power, energy, phase, frequency, resistance, inductance, capacitance
- 12. work effectively in a team

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

Name	of the course	THERMAL POWER ENGINEEING LABORATORY
Course Code: ES-ME-491		Semester: 4 th
Durat	ion: 6 months	Maximum marks:100
Teach	ing Scheme	Examination scheme:
Theor	y: 0 hr/week	Continuous Internal Assessment:40
Tutori	ial: 0 hr/week	External Assessment: 60
Practi	cal: 2 hrs/week	
Credit	: Points:1	
	Laboratory Experiments:	
1.	Study of Cut Models – Boilers IC Engines: Lanchashire Boiler, Bahcock & Willcox Boiler, Cochran Boiler, Vertical Tubular Boiler, Locomotive Boiler, 4S Diesel Engine, 4S Petrol Engine, 2S Petrol Engine	
2.	Load Test on 4 Stroke Petrol Engine & Diesel Engine by Electrical Load Box.	
3.	Load Test on 4 Stroke Diesel Engine by Rope E	Brake Dynamometer.
4.	Heat Balance on 4 Stroke Diesel Engine by Ro	pe Brake Dynamometer & by Electrical Load Box.
5.	Valve Timing Diagram on 4S Diesel Engine Mo	del & 4S Petrol Engine Model
6.	To find the Calorific Value of Diesel Fuel & Coal by Bomb Calorimeter	
7.	To find the Flash Point & Fire Point of Petrol & Diesel Fuel	
8.	To find the Cloud Point & Pour Point of Petrol & Diesel Fuel	
9.	To find Carbon Particle Percentage in Diesel Engine Exhaust Smoke by Smokemeter and trace the	
	BHP Vs. % Carbon Curve	
10.	Measurement of the Quality of Steam – Entha	alpy & Dryness fraction

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering
(Applicable from the academic session 2018-2019)

Course Outcome:

After completion of this course, the learners will be able to

- 1. identify appropriate equipment and instruments for the experiment
- 2. construct experimental setup with appropriate instruments and safety precautions
- 3. indentify different parts of Lanchashire Boiler, Bahcock & Willcox Boiler, Cochran Boiler, Vertical Tubular Boiler, Locomotive Boiler, 4S Diesel Engine, 4S Petrol Engine, 2S Petrol engine
- 4. test 4 stroke petrol engine by electrical load box and diesel engine by electrical load box and rope brake dynamometer
- 5. find calorific value, flash point, fire point, cloud point, pour point of fuel.
- 6. work effectively in a team

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)
Semester-V

Name of the course		ELECTRIC MACHINE-II		
Course Code: PC-EE-501		Semester: 5th		
Dura	tion: 6 months M	Maximum Marks: 100		
Teach		xamination Scheme	n Scheme	
Theor	J	id Semester Exam: 15	Marks	
Tutor	ial: 0hr/week As	ssignment & Quiz: 10		
Practi			5 Marks	
Credit	t Points: 3	nd Semester Exam: 70	Marks	
Objec				
1.	To understand the arrangement of windings of A	C machines.		
2.	To understand the principle of production of puls	sating and revolving m	nagnetic fields.	
3.	To understand the principle of operation and char			
4.	To understand the principle of operation and char			machines
5.	To understand the principle of operation and char			
6.	To understand the principle of operation and char			
7.	To solve problems of Induction machines, synchr	ronous machines and s	special eletrom	echanical
	devices.			
	Requisite			
1.	Basic Electrical Engineering (ES-EE-101)			
2.	Electric Circuit Theory (PC-EE-301)			
3.	Electromagnetic field theory (PC-EE-303)			
4.	Electric Machine-I (PC-EE-401)			
Unit	Content		Hrs	Marks
1	Fundamentals of AC machine windings:			
	Physical arrangement of windings in stator an			
	slots for windings; single-turn coil - active por			
	full-pitch coils, concentrated winding, distribute			
	axis,3D visualization of the above winding ty	pes, Air-gap MMF	5	
	distribution with fixed current through			
	winding-concentrated and distributed, Sinusoidal	ly distributed		
	winding, winding distribution factor			
2	Pulsating and revolving magnetic fields:	0.11		
	Constant magnetic field, pulsating magnetic			
	current in windings with spatial displaceme			
	produced by a single winding - fixed current and		5	
	Pulsating fields produced by spatially displaced		5	
	spatially shifted by 90 degrees, Addition of			
	fields, Three windings spatially shifted by 120 de			
3	three-phase balanced currents), revolving magnetic field.			
3	Induction Machines:	ming) Tamana Cli		
	Construction, Types (squirrel cage and slip- Characteristics, Starting and Maximum Torque.		10	
			10	
	Phasor Diagram, Losses and Efficiency. Envariation on torque speed characteristics (variation)			
	stator resistances, stator voltage, frequency). Metl			
	braking and speed control for induction motors.			
	Self-excitation. Doubly-Fed Induction Machines.			
	Single-phase induction motors:			
	Single-phase induction motors.			

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

4	Constructional features, double revolving field theory, equivalent circuit, determination of parameters. Split-phase starting methods and applications	5
5	Synchronous machines: Constructional features, cylindrical rotor synchronous machine - generated EMF, equivalent circuit and phasor diagram, armature reaction, synchronous impedance, voltage regulation. Operating characteristics of synchronous machines, V-curves. Salient pole machine - two reaction theory, analysis of phasor diagram, power angle characteristics. Parallel operation of alternators - synchronization and load division.	10
6	Special Electromechanical devices: Principle and construction of switched Reluctance motor, Permanent magnet machines, Brushless DC machines, Hysteresis motor, Stepper motor, Tacho generators.	5

Text books:

- 1. Electrical Machinery, P.S. Bhimra, Khanna Publishers.
- 2. Electrical Machines, Nagrath & Kothary, TMH
- 3. Electrical Machines, P.K. Mukherjee and S. Chakravorti, Dhanpat Rai Publications.
- 4. Electrical Machines, Theory & Applications, M.N. Bandyopadhyay, PHI

Reference books

- 1. Electric Machinery & Transformer, Bhag S. Guru and H.R. Hiziroglu, 3rd Edition, Oxford University press.
- 2. Electric Machinery & Transformes, Irving L. Kosow, PHI
- 3. Electric Machinery, A.E.Fitzgerald, Charles Kingsley, Jr. & Stephen D. Umans, 6th Edition, Tata McGraw Hill Edition.
- 4. Electrical Machines, R.K. Srivastava, Cengage Learning
- 5. Theory of Alternating Current Machinery, Alexander S Langsdorf, Tata Mc Graw Hill Edition
- 6. The performance and Design of Alternating Current Machines, M.G.Say, CBS publishers & distributors
- 7. Electric Machines, Charles A. Gross, CRC press.
- 8. Problems in Electrical Engineering, Parker smith, 9th Edition, CBS publishers & distributors.

Course Outcome:

After completion of this course, the learners will be able to

- 1. describe the arrangement of winding of AC machines.
- 2. explain the principle of operation of Induction machines, Synchronous machines and special machines.
- 3. solve numerical problems of Induction machines, Synchronous machines and Special machines.
- 4. estimate the parameters and efficiency of Induction machines and Synchronous machines.
- 5. determine the characteristics of Induction machines and Synchronous machines.
- 6. select appropriate methods for starting, braking and speed control of Induction machines.

Special Remarks (if any)

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

Name	e of the course	POWER SYSTEM-I		
Course Code: PC-EE-502		Semester: 5th		
Durat	tion: 6 months	Maximum Marks: 100		
	9	Examination Scheme		
	5	Mid Semester Exam: 1:		
		Assignment & Quiz: 10		
			05 Marks	
Credit	t Points: 3	End Semester Exam: 70) Marks	
Ohio	Ativo.			
Object 1.	To understand the basic principle of generation	of Electricity from diff	Comont gourges	
2.	To find parameters and characteristics of overhood			
3.	To find different parameters for the construction			
4.	To determine the performance of transmission 1		sion line	
5.	To understand the principle tariff calculation.	illies.		
6.	To solve numerical problems on the topics stud	lied		
	ro solve numerical problems on the topics studi	iicu.		
1.	Basic Electrical Engineering (ES-EE-101)			
2.	Electric Circuit Theory (PC-EE-301)			
3.	Electromagnetic field theory (PC-EE-303)			
Unit	Content		Hrs	Marks
1	Basic Concepts:		1113	IVIAI KS
1	Evolution of Power System and present day S	Scenario Structure of		
	power system: Bulk power grid and Micro Grid			
	Generation of Electric Power:	4•		
	General layout of a typical coal fired power s	tation. Hydro electric	10	
	power station, Nuclear power station, their com		10	
	principles, comparison of different methods			
	Introduction to Solar & Wind energy system.	F 8		
	Indian Electricity Rule-1956: General Introdu	iction.		
	Overhead transmission line:			
	Choice of frequency, Choice of voltage, T	Types of conductors,		
2	Inductance and Capacitance of a single ph			
	symmetrical and unsymmetrical configurations	s. Bundle conductors.		
	Transposition. Concept of GMD and GMR. I	Influence of earth on	12	
	conductor capacitance.			
	Overhead line construction:			
	Line supports, Towers, Poles, Sag, Tension and	d Clearance, Effect of		
	Wind and Ice on Sag. Dampers.			
	Corona: Principle of Corona formation, Critic			
	Visual critical corona discharge potential, Cor			
	& disadvantages of Corona. Methods of reduction	on of Corona.		
	T 14 77 37 19 19 19 19 19 19 19 19 19 19 19 19 19			
	Insulators: Types, Voltage distribution across a suspension		05	
	1			
	insulator string, String efficiency, Arching ship		03	
3	insulator string, String efficiency, Arching ship of improving voltage distribution across Insulatests on line Insulators.		03	

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

4	Cables: Types of cables, cable components, capacitance of single core & 3 core cables, dielectric stress, optimum cable thickness, grading, dielectric loss and loss angle.	04
5	Performance of lines: Short, medium (nominal, T) and long lines and their representation. A.B.C.D constants, Voltage regulation, Ferranti effect, Power equations and line compensation, Power Circle diagrams.	06
6	Tariff: Guiding principle of Tariff, different types of tariff.	03

Text book:

- 1. Electrical Power System, Subir Roy, Prentice Hall
- 2. Power System Engineering, Nagrath & Kothery, TMH
- 3. Elements of power system analysis, C.L. Wodhwa, New Age International.
- 4. Electrical Power System, Ashfaq Hussain, CBS Publishers & Distributors

Reference books

- 1. Electric Power transmission & Distribution, S.Sivanagaraju, S.Satyanarayana,, Pearson Education.
- 2. A Text book on Power system Engineering, Soni, Gupta, Bhatnagar & Chakrabarti, Dhanpat Rai & Co.
- 3. Electric Power distribution system Engineering, 2nd Edition, T. Gonen, CRC Press.
- 4. www.powermin.nic.in/acts notification/pdf/ier1956.pdf

Course Outcome:

After completion of this course, the learners will be able to

- 1. explain the principle of generation of Electric power from different sources
- 2. determine parameters of transmission lines and its performance
- 3. explain the principle of formation of corona and methods of its reduction
- 4. conduct electrical tests on insulators
- 5. solve numerical problems related to overhead transmission line, cable, insulators and tariff
- 6. analyze overhead transmission line based on short medium and long lines.

Special Remarks (if any)

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

Name of the course CO		CONTROL SYSTEM		
Course Code: PC-EE-503		Semester: 5th		
Dura	tion: 6 months	Maximum Marks: 100		
	ning Scheme	Examination Scheme		
	ry: 3 hrs./week	Mid Semester Exam: 15 Marks		
	ial: 0hr/week	Assignment & Quiz: 10		
	cal: hrs./week		05 Marks	
Credi	t Points: 3	End Semester Exam: 70	0 Marks	
Ohioo	Air.			
Objec				
1.	To find mathematical representation of LTI sy	·		
2.	To find time response of LTI systems of diffe			
3.	To find the frequency response of LTI system			
4.	To understand stability of different LTI system	S.		
5.	To analyze LTIsystems with state variables.			
6.	To solve problems of mathematical modelling	g and stability of LTI sys	tems	
	equisite			
1.	Basic Electrical Engineering (ES-EE-101)			
2.	Electric Circuit Theory (PC-EE-301)			
3.	Electromagnetic field theory (PC-EE-303)			
4.	Electric Machine-I (PC-EE-401)			
Unit	Content		Hrs	Marks
1	Concept of feedback and Automatic control, Effects of feedback, Objectives of control system, Definition of linear and nonlinear systems, Elementary concepts of sensitivity and robustness. Types of control systems, Servomechanisms and regulators, examples of feedback control systems. Transfer function concept. Pole and Zeroes of a transfer function. Properties of Transfer function.			
2	Mathematical modeling of dynamic systems: Translational systems, Rotational systems, Mechanicalcoupling, Liquid level systems, Electrical analogy of Spring–Mass-Dashpot system. Block diagramrepresentation of control systems. Block diagram algebra. Signal flow graph. Mason's gain formula. Control system components: Potentiometer, Synchros, Resolvers, Position encoders. DC and ACtacho-generators. Actuators. Block diagram level description of feedback control systems for positioncontrol, speed control of DC motors, temperature control, liquid level control, voltage control of anAlternator.			
3	Time domain analysis: Time domain analysis of a standard seconsystem. Concept of undamped natural overshoot, rise time and settling time. Dependent of the performance parameters on natural frequency of Pole and Impulse response of first and second of Pole and Zeros on transient response. Standard Routh-Hurwitz criteria and applications. Error Analysis: Steady state errors in control	frequency, damping, ndence of time domain cy and damping ratio. I order systems. Effects bility by pole location.	08	

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

	ramp and parabolic inputs. Concepts of system types and error		
	constants.		
	Stability Analysis:		
4	Root locus techniques, construction of Root Loci for simple systems.		
	Effects ofgain on the movement of Pole and Zeros.	10	
	Frequency domain analysis of linear system: Bode plots, Polar		
	plots, Nichols chart, Concept ofresonance frequency of peak		
	magnification. Nyquist criteria, measure of relative stability, phase		
	andgain margin. Determination of margins in Bode plot. Nichols		
	chart. M-circle and M-Contours inNichols chart.		
	Control System performance measure:		
5	Improvement of system performance through compensation.	05	
	Lead, Lag and Lead- lag compensation, PI, PD and PID control.		
	State variable Analysis:		
	Concepts of state variables. State space model. Diagonalization of		
6	State Matrix. Solution of state equations. Eigenvalues and Stability	10	
	Analysis. Concept of controllability and observability.		
	Pole-placement by state feedback.		
	Discrete-time systems. Difference Equations. State-space models of		
	linear discrete-time systems.		
	Stability of linear discrete-time systems.		

Text books:

- 1. Modern Control Engineering, K. Ogata, 4th Edition, Pearson Education
- 2. Control System Engineering, I. J. Nagrath& M. Gopal. New AgeInternational Publication.
- 3. Control System Engineering, D. Roy Choudhury, PHI
- 4. Automatic Control Systems, B.C. Kuo& F. Golnaraghi, 8th Edition, PHI

Reference books

- 1. Control Engineering Theory & Practice, Bandyopadhyaya, PHI
- 2. Control systems, K.R. Varmah, Mc Graw hill
- 3. Control System Engineering, Norman Nise, 5th Edition, John Wiley & Sons
- 4. Modern Control System, R.C. Dorf & R.H. Bishop, 11th Edition, PearsonEducation.
- 5. Control System Design, C. Goodwin Graham, F. Graebe F. Stefan, Salgado.E. Mario, PHI
- 6. Modeling & Control of dynamic system, Macia&Thaler, Thompson
- 7. Modern Control Technology Components & Systems, 3rd edition, C.T Kilian, Cengage Learning
- 8. Modern Control Engineering, Y. Singh & S. Janardhanan, Cengage Learning
- 9. Control System Engineering, R. Anandanatarajan& R. Ramesh Babu, ,SCITECH
- 10. Automatic Control system, A. William, Wolovich, Oxford

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

Course Outcome:

After completion of this course, the learners will be able to

- 1. developmathematical model of mechanical, electrical, thermal, fluid system and different control system components like servomotors, synchros, potentiometer, tacho-generators etc.
- 2. analyse stability of LTI system using routh-hurtwitz (RH) criteria, root locus techniques in time domain and bode plot and nyquist technique in frequency domain.
- 3. design different control law or algorithms like proportional control, proportional plus derivative(PD) control, proportional plus integration(PI) control, and proportional plus integration plus derivative (PID) control and compensators like lag, lead, lag-lead for LTI systems.
- 4. apply state variable techniques for analysis of linear systems.
- 5. analyze the stability of linear discrete system.
- 6. solve numerical problems on LTI system modelling, responses, error dynamics and stability.

Special Remarks (if any)

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

Name of the course		POWER ELECTRON	NICS	
Cours	se Code: PC-EE-504	Semester: 5 th		
Dura	tion: 6 months	Maximum Marks: 100		
Teach	ning Scheme E	Examination Scheme		
Theor	y: 3 hrs./week N	Mid Semester Exam: 15 Marks		
		Assignment & Quiz: 10) Marks	
Practi)5 Marks	
Credit	t Points: 3	End Semester Exam: 70) Marks	
Objec				
1.	To understand the functioning and characteristic	es of power switching of	devices.	
2.	To understand the principle of operation of conv	verters.		
3.	To understand different triggering circuits and to	echniques of commutat	tion of SCR	
4.	To find external performance parameter of conv	erters.		
5.	To analyze methods of voltage control, improve	ment of power factor a	and reduction of	f harmonics
	of the converter			
6.	To solve numerical problems of converters			
Pre-R	equisite			
1.	Electric Circuit Theory (PC-EE-301)			
2.	Analog Electronics (PC-EE-302)			
3.	Electromagnetic field theory (PC-EE-303)			
4.	Digital Electronics (PC-EE-402)			
Unit	Content		Hrs	Marks
	Introduction:			
	Concept of power electronics, application of			
1	uncontrolled converters, advantages and disactelectronics converters, power electronics system		04	
	power transistors, power MOSFETS, IGBT and			
	PNPN devices:			
	Thyristors, brief description of members of T symbol, V-Icharacteristics and applications. Tw	•		
2	SCR, SCR turn on methods, switching of		05	
	characteristics, ratings, SCR protection, series an	, 0		
	gate triggering circuits, different commutation techniques of SCR.			
	Phase controlled converters:			
3	Principle of operation of single phase and thr	_		
	half controlled, full controlled converters wit	·		
	loads, effects of freewheeling diodes and source		06	
	performance of converters. External perform converters, techniques of power factor improven	-		
	and three phase dual converters	nem, single phase		
	DC-DC converters:			
	DC-DC CUIIVEITEIS.			

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

4	Principle of operation, control strategies, step up choppers, types of	05	
	choppers circuits based on quadrant of operation, performance		
	parameters, multiphase choppers.		
	Inverters:		
5	Definition, classification of inverters based on nature of input	10	
	source, wave shape of outputvoltage, method of commutation &		
	connections. Principle of operation of single phase andthree phase		
	bridge inverter with R and R-L loads, performance parameters of		
	inverters, methods of voltage control and harmonic reduction of		
	inverters.		
	Resonant Pulse Converters:		
	Introduction, Series Resonant inverter, Parallel Resonant inverter,		
6	Zero-Current Switching Resonant converters, Zero-Voltage	05	
	Switching Resonant converter, Two quadrant Zero-Voltage		
	Switching Resonant converter, Resonant DC link inverter.		
7	Applications:		
	Speed control of AC and DC motors. HVDC transmission. Static	05	
	circuit breaker, UPS,static VAR controller.		

Text books:

- 1. Power Electronics, M.H. Rashid,4th Edition, Pearson
- 2. Power Electronics, P.S. Bhimra, , 3rd Edition, Khanna Publishers
- 3. Power Electronics, V.R. Moorthi, Oxford.
- 4. Power Electronics, M.D. Singh and K.B. Khanchandani, Tata Mc Graw Hill.

Reference books

- 1. Modern Power Electronics & AC drives, B.K. Bose, Prentice Hall
- 2. Power Electronics, Mohan, Undeland & Riobbins, Wiley India
- 3. Element of power Electronics, Phillip T Krein, Oxford.
- 4. Power Electronics systems, J.P. Agarwal, Pearson Education.
- 5. Analysis of Thyristor power conditioned motor, S.K. Pillai, University Press.
- 6. Power Electronics, M.S. Jamal Asgha, PHI.
- 7. Power Electronics: Principles and applications, J.M. Jacob, Thomson

Course Outcome:

After completion of this course, the learners will be able to

- 1. differentiate between signal level and power level devices.
- 2. construct triggering and commutation circuits of SCR.
- 3. explain the principle of operation of AC-DC, DC-DC and DC-AC converters.
- 4. analysethe performance of AC-DC, DC-DC and DC-AC converters.
- 5. apply methods of voltage control and harmonic reduction to inverters.
- 6. solve numerical problems of switching devices, AC-DC, DC-DC and DC-AC converters.

Special Remarks (if any)

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

Name	of the course	ELECTRIC MACHINE-IILABORATORY
Course Code: PC-EE 591		Semester: 5 th
Duration: 6 months		Maximum marks:100
Teach	ing Scheme	Examination scheme:
Theor	y: 0 hr/week	Continuous Internal Assessment:40
	ial: 0 hr/week	External Assessment: 60
	ical: 2 hrs/week	
Credit	t Points:1	
	Laboratory Exp	eriments:
1.		ge Induction Motor & their comparison [DOL, Auto
	transformer &Star-Delta]	
2.	Study of equivalent circuit of three phase Indu	ıction motor by no load and blocked rotor
	test.	
3.	Study of performance of wound rotor Induction motor under load.	
4.	Study of performance of three phase squirrel-	cage Induction motor -determination of
	iron-loss, friction &windage loss.	
5.	Speed control of 3 phase squirrel cage induction motor by different methods & their comparison	
6.	[voltagecontrol & frequency control]. Speed control of 3 phase slip ring Induction m	otor by rotor recistance control
7.		•
/.	Determination of regulation of Synchronous n a. Potier reactance method.	nachine by
	b. Synchronous Impedance method.	
8.	Determination of equivalent circuit parameter	rs of a single phase Induction motor
9.	Load test on single phase Induction motor to	
10.	To determine the direct axis resistance [Xd] &	
	synchronous machine byslip test.	
11.	Load test on wound rotor Induction motor to obtain the performance characteristics.	
12.	To make connection diagram to full pitch & fra	
	Induction motor for6 poles & 4 pole operation	
13.	To study the performance of Induction genera	
14.	Parallel operation of 3 phase Synchronous ger	nerators
15.	V-curve of Synchronous motor	

Institute may develop experiments based on the theory taught in addition to experiments mentioned.

Reference book:

- 1. Laboratory experiments on Electrical Machines, C.K. Chanda, A. Chakrabarti, Dhanpat Rai& Co.
- 2. Laboratory manual for Electrical Machines, D.P. Kothari, B.S.Umre, I K International Publishing House Pvt. Ltd.

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

Course outcome: After completion of this course, the learners will be able to

- 1. identify appropriate equipment and instruments for the experiment.
- 2. test the instrument for application to the experiment.
- 3. construct circuits with appropriate instruments and safety precautions.
- 4. validate different characteristics of single phase Induction motor, three phase Induction motor, Induction generator and synchronous motor , methods of speed control of Induction motors and parallel operation of the 3 phase Synchronous generator.
- 5. work effectively in a team

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

Name	of the course	POWER SYSTEM-I LABORATORY
Course Code: PC-EE 592		Semester: 5 th
Durat	ion: 6 months	Maximum marks:100
	ing Scheme	Examination scheme:
	ry: 0 hr/week	Continuous Internal Assessment:40
Tutori	ial: 0 hr/week	External Assessment: 60
Practi	cal: 2 hrs/week	
Credit	: Points:1	
	Laboratory Experiments:	
1.	Determination of the generalized constants A.B, C, D of long transmission line and regulation of a	
	3-Φ transmission line model	
2.	Study of distribution system by network anal	yzer.
3.	Measurement of earth resistance by earth te	ster.
4.	Determination of dielectric strength of insula	ting oil.
5.	Determination of breakdown strength of soli	d insulating material
6.	Determination of parameter of 3-Φ transmission line model by power circle diagram	
7.	Study of different types of insulator.	
8.	Study of active and reactive power control of	
9.	Study and analysis of an electrical transmission	on line circuit with the help of software
10.	Determination of dielectric constant, tan delta, resistivity of transformer oil.	

Institute may develop experiments based on the theory taught in addition to experiments mentioned.

Course outcome: After completion of this course, the learners will be able to

- 1. identify appropriate equipment and instruments for the experiment.
- 2. test the instrument for application to the experiment.
- 3. construct circuits with appropriate instruments and safety precautions.
- 4. validate different characteristics of transmission line.
- 5. determine earth resistance, dielectric strength of insulating oil, breakdown strength of solid insulating material and dielectric constant of transformer oil.
- 6. analyze an electrical transmission line circuit with the help of software
- 7. work effectively in a team

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

Name	me of the course CONTROL SYSTEMLABORATORY		
Course Code: PC-EE 593		Semester: 5 th	
Durat	tion: 6 months	Maximum marks:100	
Teaching Scheme Examination scheme:			
	ry: 0 hr/week	Continuous Internal Assessment:40	
	ial: 0 hr/week	External Assessment: 60	
	ical: 2 hrs/week		
Credit	t Points:1		
	Laboratory Exp		
1.	·	tool box, MAT-Lab- simulink tool box & PSPICE	
2.	i i	r & Second order system with unity feedback with	
	the help of CRO &calculation of control		
	overshoot, settling time etc. from theresponse		
3.	Simulation of Step response & Impulse respor feedback using MATLAB & PSPICE.	nse for type-0, type-1 & Type-2 system with unity	
4.		ist plot using MATLAB control system tool box for a	
	givensystem &stability by determining control system specification from the plot.		
5.	Determination of PI, PD and PID controller action of first order simulated process.		
6.	Determination of approximate transfer function	ons experimentally from Bode plot.	
7.		, percentage peak overshoot, gain margin, phase	
	margin withaddition of Lead, Lag, Lead-lag co	•	
8.	Study of a practical position control system of		
		nped responses. Determination of rise time and	
	peak time using individualized components by simulation. Determination of un-damped natural		
	frequency and damping ratio from experimental data.		
9.	Analysis of performance of Lead, Lag and Lead-Lag compensation circuits for a given system using simulation.		
10.		system from State Variable model and vice versa.	
11.	Analysis of performance of a physical system using State variable technique by simulation. Study ofstep response and initial condition response for a single input, two-output system in SV form by simulation.		

Institute may develop experiments based on the theory taught in addition to experiments mentioned.

Course outcome: After completion of this course, the learners will be able to

- 1. identify appropriate equipment and instruments for the experiment.
- 2. test the instrument for application to the experiment.
- 3. construct circuits with appropriate instruments and safety precautions.
- 4. use MAT-Lab control system tool box, MAT-Lab- simulink tool box & PSPICE for simulation of systems.
- 5. determinecontrol system specifications of first and second order systems.

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

- 6. validate step response & impulse response for type-0, type-1 & Type-2 system with unity feedback using MATLAB & PSPICE.
- 7. work effectively in a team

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

Name	me of the course POWER ELECTRONICSLABORATORY				
Course Code: PC-EE 594		Semester: 5 th			
Duration: 6 months Maximum n		Maximum marks:100			
Teaching Scheme Examination scheme:					
	ry: 0 hr/week	Continuous Internal Assessment:40			
	ial: 0 hr/week	External Assessment: 60			
	ical: 2 hrs/week				
Credit	t Points:1				
		1.			
4	Laboratory Exp	periments:			
1.	Study of the characteristics of an SCR.				
2.	Study of the characteristics of a Triac				
3.	Study of different triggering circuits of an SCR				
4.	Study of firing circuits suitable for triggering SCR in a single phase full controlled bridge.				
5.	Study of the operation of a single phase full c	ontrolled bridge converter with R and R-L load.			
6.	Study of performance of single phase half controlled symmetrical and asymmetrical bridge converters.				
7.	Study of performance of step down chopper	with R and R-L load.			
8.	Study of performance of single phase controlled converter with and without source inductance (simulation)				
9.	Study of performance of step up and step down chopper with MOSFET, IGBT and GTO as switch (simulation)				
10.	Study of performance of single phase half controlled symmetrical and asymmetrical bridge converter.(simulation)				
11.	Study of performance of three phase controll	ed converter with R & R-L load. (simulation)			
12.	Study of performance of PWM bridge inverte	r using MOSFET as switch with R and R-L load.			
13.	Study of Zero Voltage Switching Resonant	converter and Zero Current Switching Resonant			
	Converter andto plot its output waveforms.				
14.	Study the speed control of universal motor to plot speed v/s α				

Institute may develop experiments based on the theory taught in addition to experiments mentioned.

Reference book:

1. Power Electronics Laboratory: Theory, Practice and Organization, O.P.Arora, Om Prakash Arora, Alpha science International.

Course outcome: After completion of this course, the learners will be able to

- 1. identify appropriate equipment and instruments for the experiment.
- 2. test the instrument for application to the experiment.
- 3. construct circuits with appropriate instruments and safety precautions.

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

- 4. validatecharacteristics of SCR, Triac, and performance of phase controlled converter, DC-DC converter, inverters and resonant pulse converters.
- 5. demonstrate the relation between the speed and firing angle of Universal motor.
- 6. work effectively in a team

Special Remarks:

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

Elective-II (Open elective)

Name of the course DATA STR		DATA STRUCTURE	& ALGORIT	HM	
Course Code: OE-EE-501A		Semester: 5 th			
Duration: 6 months Maximum Marks: 100		0			
	ning Scheme	Examination Scheme	7) 5 1		
	y: 3 hrs./week	Mid Semester Exam: 1:			
	al: 0hr/week	Assignment & Quiz: 10			
	cal: hrs./week		05 Marks		
Credit	Points: 3	End Semester Exam: 70) Marks		
Objec	tive:				
1.	To understand the basics of abstract data types				
2.	To understand the principles of linear and non				
3.	To build an application using sorting and sear				
	equisite	ciiiig			
1.	Programing for problem solving (ES-CS 201)				
2.	Mathematics (BS-M-102)				
3.	Mathematics (BS-M-202)				
Unit	Content		Hrs	Marks	
Oint	Introduction: Basic Terminologies: Elementa	ary Data Organizations	1113	IVIAI KS	
1	Data Structure Operations: insertion, de Analysis of an Algorithm, Asymptotic Notat off. Searching: Linear Search and Binary Sear	letion, traversal etc.; ions, Time-Space trade	10		
	their complexity analysis.				
	Stacks and Queues: ADT Stack and its oper				
	their complexity analysis, Applications of				
2	Conversion and evaluation – correspon				
	complexity analysis. ADT queue, Types of		10		
	Circular Queue, Priority Queue; Operations of Queues: Algorithms and their analysis.	n each types of			
	Linked Lists: Singly linked lists: Repres	centation in mamour			
3	Algorithms of several operations: Traversing into, Deletion from linked list; Linked representations.	g, Searching, Insertion esentation of Stack and	10		
	Queue, Header nodes, Doubly linked list: algorithmic analysis; Circular Linked List				
	algorithms and the complexity analysis.				
	Terminologies, Different types of Trees: I				
	Binary Tree, Binary Search Tree, AVL Tree				
	each of the trees and their algorithms with cor				
	Applications of Binary Trees. B Tree,	B+ Tree: definitions,			
	algorithms and analysis				
	Sorting and Hashing: Objective and propert				
4	algorithms: Selection Sort, Bubble Sort, Inse				
	Merge Sort, Heap Sort; Performance and Con	1	10		
	methods, Hashing. Graph: BasicTerminologie Graph search and traversal algorithms and con				
	Graph scarch and haversar argorithms and cor	inpresity analysis.			

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

Text books:

- 1. Data Structures and Program Design In C, 2/E by Robert L. Kruse, Bruce P. Leung. PHI
- 2. Data Structure & Algorithms Using C, R.S. Salaria, 5th Ed., Khanna Publishing House
- 3. Data Structures in C, Aaron M. Tenenbaum. Pearson.
- 4. Data Structure, S. Lipschutz.. Mc Graw Hill.

Reference books

- 1. Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, MIT press
- 2. Expert Data Structures with C++, R.B Patel, Khanna Publishing House
- 3. Fundamentals of Data Structures of C, Ellis Horowitz, SartajSahni, Susan Andersonfreed, MIT press
- 4. Data Structures Using C, ReemaThareja. Oxford University press
- 5. Data Structure Using C, 2/e by A.K. Rath, A. K. Jagadev. SCITECH
- 6. Data Structures through C, YashwantKanetkar, BPB Publications.

Course Outcome:

After completion of this course, the learners will be able to

- 1. differentiate how the choices of data structure & algorithm methods enhance the performance of the program.
- 2. solve problems based upon different data structure & also write programs.
- 3. write programs based on different data structure
- 4. identify appropriate data structure & algorithmic methods in solving problem.
- 5. discuss the computational efficiency of the principal algorithms for sorting, searching, and hashing
- 6. comparethe benefits of dynamic and static data structures implementations.

Special Remarks (if any)

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

Elective-II (Open elective)

Name		BJECT ORIENTE) PROGRAM	MING	
Cour	se Code: OE-EE-501B So	emester: 5 th			
Dura	Duration: 6 months Maximum Marks: 1		0		
	8	xamination Scheme			
	7	Iid Semester Exam: 1			
1		ssignment & Quiz: 10			
			05 Marks		
Credi	t Points: 3	nd Semester Exam: 7	0 Marks		
Objec	tive:				
1.	To understand simple abstract data types				
2.	To understand features of object-oriented design	such as encapsulation	n, polymorphisi	m,	
	inheritance				
3.	To understand common object-oriented design pa				
4.	To design applications with an event-driven grap	hical user interface.			
Pre-R	equisite				
1.	Programing for problem solving (ES-CS 201)				
Unit	Content		Hrs	Marks	
1	Abstract data types and their specification. How	to implement an	08		
	ADT. Concrete state space, concrete invariant, al	ostraction function.			
	Implementing operations, illustrated by the Text	example.			
2	Features of object-oriented programming. Encape	sulation, object	08		
	identity, polymorphism – but not inheritance.				
3	Inheritance in OO design. Design patterns. Introd	08			
	classification. The iterator pattern.				
	Model-view-controller pattern. Commands as me		08		
4	objects. Implementing OO language features. Memory management.				
5	Generic types and collections GUIs. Graphical pr		08		
	Scale and Swing. The software development pro	ocess			

Text books:

- 1. Object Oriented Modelling and Design, Rambaugh, James Michael, Blaha Prentice Hall India.
- 2. The complete reference-Java2, Patrick Naughton, Herbert Schildt, TMH
- 3. Core Java For Beginners, R.K. Das, VIKAS PUBLISHING
- 4. Java How to Program, Deitel and Deitel, 6th ED, Pearson

Reference books

- 1. Object Oriented System Development, Ali Bahrami, McGraw Hill.
- 2. Ivor Horton's Beginning Java 2 SDK Wrox
- 3. Programming With Java: A Primer, E. Balagurusamy 3rd Ed., TMH

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

Course Outcome:

After completion of this course, the learners will be able to

- 1. specify simple abstract data types.
- 2. recognise features of object-oriented design such as encapsulation, polymorphism, inheritance, and composition of systems based on object identity.
- 3. apply common object-oriented design patterns
- 4. specify uses of common object oriented design patterns with examples.
- 5. design applications with an event-driven graphical user interface.

Special Remarks (if any)

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

Elective-II (Open elective)

Name of the course COMPUTER ORGANISATION Course Code: OE-EE-501C Semester: 5 th			
100			
1e			
70 Marks			
circuits.			
s etc.			
Digital Electronics (PC-EE 402)			
Hrs	Marks		
on 08			
nd			
t.			
-			
£ 40			
1 10			
	ne : 15 Marks 10 Marks 05 Marks : 70 Marks circuits.		

Text books:

- 1. Computer System Architecture, Mano, M.M. PHI.
- 2. Computer Architecture & Organisation, Hayes J. P, McGraw Hill,
- 3. Computer Organisation & Design, Chaudhuri P. Pal, PHI,
- 4. Computer Organization & Architecture, Rajaraman, PHI

Reference books

- 1. Computer Architecture, BehroozParhami, Oxford University Press
- 2. Microprocessors and Microcontrollers, N. senthil Kumar, M. Saravanan, S. Jeevananthan ,OUP

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

- 3. Computer Organization & Architecture, P N BasuVikas Pub
- 4. Computer Organization & Architecture, B.Ram, Newage Publications
- 5. Computer Organisation, Hamacher, McGraw Hill,

Course Outcome:

After completion of this course, the learners will be able to

- 1. explain basic structure of digital computer, stored program concept, different arithmetic and control unit operations, operating systems and compiler/assembler, memory and I/O operations.
- 2. differentiate between RISC vs CISC architectures, cache memory, virtual memory.
- 3. performfixed point multiplication and division.
- 4. applyrestoring and non-restoring algorithms, floating point IEEE 754 standard.
- 5. design adder, memory unit and control unit, data path for read/write access.

Special Remarks (if any)

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

Elective-I

Name	e of the course HI	IGH VOLTAGE EN	GINEERING	ſ
Course Code: PE-EE-501A		Semester: 5 th		
Duration: 6 months Maximu		aximum Marks: 100		
Teach	eaching Scheme Examination Scheme			
Theor	ory: 3 hrs./week Mid Semester Exam: 15 Marks			
Tutor	ial: 0hr/week As	ssignment & Quiz: 10	Marks	
Practi			5 Marks	
Credit	t Points: 3 En	nd Semester Exam: 70) Marks	
Objec	tive:			
1.	To understand the breakdown phenomenon of sol	id, liquid and gases.		
2.	To understand the method of generation of high v	roltage AC and DC.		
3.	To understand measurement techniques of high vo	oltage and current		
4.	To understand the over voltage phenomenon and		on in Electric p	ower
	systems		1	
5.	To understand different methods of high voltage t	testing.		
6.	To solve numerical problems of breakdown pheno		d measuremen	t of high
	voltage and currents, over voltage phenomena and			C
Pre-R	equisite			
1.	Electric Circuit Theory (PC-EE-301)			
2.	Electromagnetic field theory (PC-EE-303)			
3.	Electric Machine-I (PC-EE-401)			
4.	Electrical and Electronics measurement (PC-EE-4	103)		
Unit	Content	103)	Hrs	Marks
Oilit	Breakdown phenomena:		1113	IVIAINS
	Breakdown of Gases: Mechanism of Breakdow	n of gases Charge		
1	multiplication, Secondaryemission, Townsend		10	
•	Theory, Paschen's Law, Determination of M		10	
	voltage, Breakdown in non-uniform field, Eff			
	corona inceptionand break down voltage.			
	Partial Discharge: definition and development in	solid dielectric.		
	Break Down of Solids: Intrinsic breakdown, Elect			
	break down, Thermalbreakdown, Streamer Break	down.		
	Breakdown of Liquid: Intrinsic Break down, Cavi	itation Theory,		
	Suspended particle Theory.			
	Breakdown in Vacuum: Non-metallic electron em	nission mechanism,		
	Clump mechanism,			
	Effect of pressure on breakdown voltage.			
	Generation of High Voltage and Currents			
•	Generation of highDC and AC voltages: half wa			
2	Cockroft-Walton voltage multiplier circuit, Elec	ctrostatic generator,	08	
	Cascaded transformers, Series resonant circuit.	. 4 1		
	Generation of Impulse voltages and currents: star	•		
	shapes, Multistage impulse generators, generation			
	surges, generation of impulse currents, trippin	ng and control of		
	impulse generators. Massurament of High Voltage and Currents			
2	Measurement of High Voltage and Currents Sphere gap, Uniform field spark gap, Rod gap, El	ectrostatic		
3	voltmeter, Generating voltmeter, Impulse voltage			
	voluncies, Generaling voluncies, impulse voltage	measurements		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

	using voltage dividers, Measurement of High DC and Impulse	08	
	currents. Cathode ray oscillographs for impulse voltage and current		
	measurements.		
	Over voltage phenomenon and insulation coordination in		
4	Electric power systems:		
	Lightning Phenomena, Electrification of cloud, Development of		
	Lightning Stroke, lightning induced over voltage, direct stroke,		
	indirect stroke.	08	
	Protection of Electrical Apparatus against over voltage, Lightning		
	Arrestors, Valve Type, Metal Oxide arresters, Expulsion type. Effect		
	of location of lightning arresters on protection of transformer.		
	Protection of substation, Ground wires.		
	Insulation Co-ordination, Basic Insulation level. Basic Impulse		
	level, Switching Impulse level. Volt time characteristics of		
	protective devices, Determination of Basic Impulse level of		
	substation equipment.		
	High Voltage Testing:		
5	Various standards for HV Testing of electrical apparatus, IS, IEC		
	standards, Testing of insulators andbushings, testing of isolators and	06	
	circuit breakers, testing of cables, power transformers. High voltage		
	laboratory layout, indoor and outdoor laboratories, testingfacility		
	requirements, safety precautions in H. V. Labs.		

Text books:

- 1. High Voltage Engineering, C.L. Wadhawa, New Age International Publishers.
- 2. High Voltage Engineering, M.S. Naidu & V. Kamraju, Tata MC Graw Hill publication.

Reference books

- 1. High-Voltage Engineering: theory and practice, Mazen Abdel-Salam; Hussein Anis; Ahdab El-Morshedy; RoshdyRadwan, New York, N.Y.: Marcel Dekker, ©2000.
- 2. High Voltage Engineering, E. Kuffel, W.S. Zaengl, J. Kuffel, 2nd edition, Butterworth-Heinemann.

Course Outcome:

After completion of this course, the learners will be able to

- 1. explain breakdown phenomenon of gas, liquid and solid and vacuum
- 2. suggest methods for generation and measurement of high voltage and currents.
- 3. determine the basic insulation level of substation equipment.
- 4. apply methods for protection of electrical apparatus against over voltage
- 5. test insulators, bushings, isolators, circuit breakers, cables and power transformers.
- 6. solve numerical problems of breakdown phenomena, generation and measurement of high voltage and currents, over voltage phenomena and high voltage testing.

Special Remarks (if any)

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

Elective-I

		POWER PLANT ENG	GINEERING	r
Course Code: PE-EE-501B		Semester: 5 th		
Duration: 6 months Maximum Marks: 100				
Toock	Teaching Scheme Examination Scheme			
	7: 3 hrs./week Mid Semester Exam: 15 Marks			
	al: Ohr/week	Assignment & Quiz: 10		
			05 Marks	
	Points: 3	End Semester Exam: 70		
			·	
Objec	tive:			
1.	To understand methods of selection of power p	plant and its economic.		
2.	To understand the principle of operation difference		ts.	
3.	Tounderstand methods of site selection of diffe			
4.	To understand the cause of pollution and its rea			
5.	To understand methods of cooling of generator			
6.	To solve numerical problems of load estimation		plants.	
	equisite		<u> </u>	
1.	Electric Circuit Theory (PC-EE-301)			
2.	Electromagnetic field theory (PC-EE-303)			
3.	Electric Machine-I (PC-EE-401)			
4.	Electrical and Electronics measurement (PC-E	E-403)		
Unit	Content	2 103)	Hrs	Marks
Oille	Introduction:		1113	IVIAIRS
1	Power and energy, sources of energy, revier cycles related to powerplants, fuels calculations. Load estimation, load curves, var involved in power plantcalculations. Effect power plant operation, Selection of power plant Power plant economics and selection: Effect of plant type on costs, rates, fixed elem customer elements and investor's profit; replacement, theory of rates. Economics of plant considerations in plant selection.	s and combustion rious terms and factors of variable load on ht. hents, energy elements, compression and	08	
2	Steam power plant: General layout of steam power plant, Power particular and supercritical boilers. Fluidized mountings and accessories, Different systems system, pulverizers and coal burners, combust handling system, Dust collection system, and and and cooling towers and coal auxiliary systems such asgoverning, feed heat heating and gland leakage. Operation and power plant, heat balance and efficiency, Site steampower plant.	bed boilers, boilers ssuch as coal handling stionsystem, draft, ash Feed water treatment oling ponds, Turbine ting, reheating, flange maintenance of steam	08	
3	Diesel power plant: General layout, Components of Diesel power diesel power plant, fuelsystem, lubrication s admission system, supercharging system, plant operation and efficiency, heat balance, S	system, air intake and exhaustsystem, diesel		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

	powerplant, Comparative study of diesel power plant with	08
	steampower plant.	
	Gas turbine power plant:	
	Layout of gas turbine power plant, Elements of gas turbine power	
	plants, Gas turbine fuels, cogeneration, auxiliary systems such as	
	fuel, controls and lubrication, operation andmaintenance, Combined	
	cycle power plants, Site selection of gas turbine power plant.	
	Nuclear power plant:	
4	Principles of nuclear energy, Lay out of nuclear power plant, Basic components of nuclear reactions, nuclear power station, Nuclear	
	waste disposal, Site selection of nuclear power plants.	
	Hydro electric station:	10
	Hydrology, Principles of working, applications, site selection,	10
	classification and arrangements, hydro-electric plants, run off size of	
	plant and choice of units, operation and maintenance, hydro systems,	
	interconnected systems.	
	Non Conventional Power Plants: Introduction to non-conventional	
	power plants (Solar, wind, geothermal, tidal)etc.	
	Electrical system:	
5	Generators and their cooling, transformers and their	
	cooling.Instrumentation Purpose, classification, selection and	06
	application, recorders and their use, listing of various control	
	rooms.Pollution due to power generation and its remedy	

Text books:

- 1. Power Plant Engineering, P.K. Nag, McGraw Hill.
- 2. Power Plant Engineering, F.T. Morse, Affiliated East-West Press Pvt. Ltd.
- 3. Power Plant Technology El-Vakil, McGraw Hill.

Reference books

- 1. Steam & Gas Turbines & Power Plant Engineering by R. Yadav, Central Pub. House.
- 2. An introduction to thermal power plant engineering and operation, P.K.Das and A.K.Das, Notion press.

Course Outcome:

After completion of this course, the learners will be able to

- 1. explain the principle of operational of Steam, Hydroelectric, Diesel, Gas turbine, Nuclear power and non-conventional power plant.
- 2. identifythe cause of pollution for power generation and its remedy.
- 3. suggest location to set up Steam, Hydroelectric, Diesel, Gas turbine and Nuclear power plant.
- 4. compare Steam, Hydroelectric, Diesel, Gas turbine, Nuclear power and non-conventional power plant.
- 5. suggest methods of maintenance of Steam, Gas and Hydroelectric power plants
- 6. solve numerical problems of load estimation and economics of power plants.

Special Remarks (if any)

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

Elective-I

Name		RENEWABLE & NO ENERGY	N CONVE	NTIONAL
		Semester: 5 th		
	Ouration: 6 months Maximum Marks: 100			
Teach	ning Scheme I	Examination Scheme		
Theor	y: 3 hrs./week	Mid Semester Exam: 15	5 Marks	
		Assignment & Quiz: 10	Marks	
)5 Marks	
Credit	t Points: 3	End Semester Exam: 70) Marks	
Objec	tive:			
1.	To understand the difference between Renewab	le and non-renewable e	energy sourc	es
2.	To understand methods of conversion of solar e	energy and wind energy	to other for	m of energy.
3.	Tounderstand methods harnessing energy from			
4.	To understand the principle of operation of Mag	gneto Hydrodynamic po	ower genera	tion:
5.	To understand the principle and operation of fue			
6.	To solve numerical problems of Renewable and	l non-renewable energy	sources	
Pre-R	equisite			
1.	Electric Circuit Theory (PC-EE-301)			
2.	Electromagnetic field theory (PC-EE-303)			
3.	Electric Machine-I (PC-EE-401)			
4.	Electrical and Electronics measurement (PC-EB	E-403)		
Unit	Content	,	Hrs	Marks
	Introduction to Energy sources:			
	Renewable and non-renewable energy sources,	, energy consumption		
1	as a measure of Nation's development; stra		03	
	future energy requirements Global and National			
	of renewable energy sources. Impact ofrenewable energy generation			
	on environment, Kyoto Protocol.			
	Solar Energy:			
	Solar radiation - beam and diffuse radiation, sol	· ·		
2	angles, attenuation and measurement of solar	′		
	time, derived solar angles, sunrise, sunset and		08	
	collectors, concentratingcollectors, Solar air			
	driers, storage of solar energy-thermal storag water heaters, solar distillation, solar still, solar			
	& cooling of buildings, photo voltaic - solar c			
	PV Cells, Mono-poly Crystalline and amorphou			
	Design of PV array. Efficiency and cost of			
	applications. PV hybrid systems	01 1 1 5 5 5 5 5 6 1 1 5		
	Wind Energy:			
3	Principle of wind energy conversion; Basic	components of wind		
	energy conversion systems; wind mill compone		05	
	their constructional features; design considerati			
	vertical axis wind machines: analysis ofaerod			
	on wind mill blades and estimation of power ou			
	site selection considerations			
	Energy from Biomass:			

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

4	Biomass conversion technologies, Biogas generation plants, classification, advantages and disadvantages, constructional details, site selection, digester design consideration, filling a digester for starting, maintaining biogas production, Fuel properties of bio gas, utilization of biogas	05	
	Geothermal Energy:		
5	Estimation and nature of geothermal energy, geothermal sources and resources like hydrothermal, geo-pressured hot dryrock, magma. Advantages, disadvantages and application of geothermal energy, prospects of geothermal energy in India.	05	
6	Energy from Ocean:		
	Ocean Thermal Electric Conversion (OTEC) systems like open		
	cycle, closed cycle, Hybrid cycle, prospects of OTEC inIndia.	05	
	Energy from tides, basic principle of tidal power, single basin and		
	double basin tidal power plants, advantages, limitation and scope of		
	tidal energy. Wave energy and power from wave, wave energy		
	conversion devices, advantages and disadvantages of wave energy.		
7	Magneto Hydrodynamic power generation:	05	
	Principle of MHD power generation, MHD system, Design		
	problems and developments, gas conductivity, materials forMHD		
	generators and future prospects.		
8	Hydrogen Energy: Introduction, Hydrogen Production methods, Hydrogen storage,		
	hydrogen transportation, utilization of hydrogen gas, hydrogen as	03	
	alternative fuel for vehicles.		
9	Fuel cell:		
,	Introduction, Design principle and operation of fuel cell, Types of	03	
	fuel cells, conversion efficiency of fuel cell, application of fuel cells		

Text books:

- 1. Renewable energy sources and conversion technology, Bansal Keemann, Meliss, Tata Mc Graw Hill.
- 2. Renewable energy resources and emerging technologies, D.P. Kothari, PHI.
- 3. Non-conventional Energy sources, G.D. Rai, Khanna Publishers.

Reference books

1. Non-conventional Energy, Ashok V. Desai, New Age International Publishers Ltd.

Course Outcome:

After completion of this course, the learners will be able to

- 1. explain the principle of conversion of solar energy, wind energy, biomass, Geothermal energy, Ocean energy and Hydrogen energy to other form of energy.
- 2. explain the principle of operation of magneto hydrodynamic power generation:
- 3. useSolar energy, Wind energy, Biomass, Geothermal energy, Ocean energy, Hydrogen energy and fuel cell for different applications.
- 4. suggest location to set up wind mill and biogas generation plant
- 5. estimate conversion efficiency of fuel cell.

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

6. solve numerical problems relating to conversion of Solar energy, Wind energy, Biomass, Ocean energy and Hydrogen energy to heat and electric energy.

Special Remarks (if any)

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

Semester-VI

Name of the course		POWER SYSTEM-II		
Course Code: PC-EE-601		Semester: 6 th		
Durat	tion: 6 months	Maximum Marks: 100		
Teach	Teaching Scheme Examination Scheme			
Theor	y: 3 hrs/week	Mid Semester Exam: 1	5 Marks	
Tutori	al: 0hr/week	Assignment & Quiz: 1	10 Marks	
Credit	Points: 3	Attendance: (05 Marks	
		End Semester Exam:	70 Marks	
Objec	etive:			
1.	To understand the method of representation of	f power system compor	nents	
2.	To know about loacation and components of a	a distribution substation.		
3.	To understand different methods of load flow	studies.		
4.	To determine faults in Electrical systems.			
5.	To understand the principle of power system s			
6.	To understand the principle of relays and met	thods of protection of po	wer system	
7.	To solve numerical problems on the topics stu	idied.		
Pre-R	Requisite			
1.	Electric Circuit Theory (PC-EE-301)			
2.	Electromagnetic field theory (PC-EE-303)			
3.	Power system-I (PC-EE-502)			
Unit	Content		Hrs	Marks
1	Representation of Power system comp	oonents: Single-phase		
	representation of balanced three phase n	etworks, the one-line		
	diagram and the impedance or reactance of	diagram, per unit (PU)	02	
	system.			
	Distribution substation: Types of subs	stations, location of		
	substations, substation equipments and	accessories, earthling	05	
2	(system & equipment), feeder and distribi	utors, radial and loop		
	systems.			
	Load flow studies: Network model formulati	ion, formation of Ybus,		
	load flow problem, Gauss-Siedel meth	od, Newton-Raphson	05	
	method, Decoupled load flow studies, con	mparison of load flow		
3	methods.	•		
	Faults in Electrical systems: Transient on a transmission line, short			
4	circuit of a synchronous machine under no load & loaded condition. $oxed{08}$			
	Symmetrical component transformation, sec	quence impedance and		
	sequence network of power system, s	synchronous machine,		
	transmission lines and transformers. Syr	mmetrical component		
	analysis of unsymmetrical faults, single line-to	o –ground fault, lineto-		
	line fault, double line-to- ground fault			
	Power system stability: Steady state stabil	lity, transient stability,		
	rower system stability: Steady State Stabil	nty, transient stability,		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

5	equal area criteria, swing equation, multi machine stability concept	04	
6	Power system protection: Protective zones, Relaying elements and quantities. Protective relays, basic requirements and type of protection, phase and amplitude comparator, grading (time & current), classification of Electromagnetic relays, Directional relay, Distant relay, Differential relay, basic aspects of static and digital relays, relay protection scheme for transformer, feeder, generators and motors. Circuit breakers, circuit breaking transients, transient recovery voltage, current chopping and resistance switching, circuit breaker rating, arc and arc extinction, circuit breaker types, oil circuit breaker, vacuum circuit breaker, air blast circuit breaker, SF6 circuit breaker and operating mechanism, advantages and disadvantages of different types		

Text book:

- 1. Modern Power System Analysis, D.P. Kothari & I.J. Nagrath, 4th Edition, Tata McGraw Hill.
- 2. Electrical Power Systems, Subir Ray, PHI
- 3. Switchgear protection and power systems, Sunil S Rao, Khanna Publications.
- 4. A text book on Power System Engineering, M.L.Soni, P.V.Gupta, U.S. Bhatnagar & A. Chakrabarti, Dhanpat Rai & CO.

Reference Books:

- 1. Protection & Switchgear, B. Bhalja, R.P. Maheshwari, N.G.Chothani, Oxford.
- 2. Power system protection & switchgear, B.Ram & D.N. Vishwakarma, Tata McGraw Hill.
- 3. Handbook of Electrical Power Distribution, G. Ramamurthy, University Press
- 4. Electric Power Transmission and Distribution, S. Sivanagaraju, S.Satyanarayana, Pearson Education.
- 5. Power Systems Stability, Vol. I,II & II, E.W. Kimbark, Wiley.
- 6. Power Engineering, D.P Kothari & I.J. Nagrath, Tata McGraw Hill.
- 7. Power Systems Analysis, A. R. Bergen & V. Vittal, Pearson Education. 8. Computer Aided Power systems analysis, Dr. G. Kusic, CEC press.

Course Outcome:

After completion of this course, the learners will be able to

- 1. Represent power system components in line diagrams.
- 2. Determine the location of distribution substation.
- 3. Determine the performance of power system with the help of load flowy studies.
- 4. Analyse faults in Electrical systems.
- 5. Determine the stabilty of Power system.
- 6. Explain principle of operation of different power system protection equipments.
- 7. Solve numerical problems related to representation, load flow, faults, stabilty and protection of power system.

Special Remarks (if any)

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

Name of the course		MICROPROCESSOR & MICRO CONTROLLER				
Course Code: PC-EE-602		Semester: 6th				
Duration: 6 months		Maximum Marks: 100)			
Teaching Scheme		Examination Scheme				
Theory: 3 hrs/week		Mid Semester Exam: 15 Marks				
Tutorial: 0hr/week		Assignment & Quiz: 10 Marks				
Credit Points: 3		Attendance: 05 Marks				
		End Semester Exam: 7	70 Marks			
Objec						
1.	To understand the architecture of 8086 microp	rocessor				
2.	To understand the design aspects of I/O and N					
3.	To interface microprocessors with supporting					
4.	To understand the architecture of 8051 microcontroller.					
5.	To design a microcontroller based system					
	Requisite					
1.	Analog Electronics (PC-EE-302)					
2.	Digital Electronics (PC-EE-402)					
Unit	Content		Hrs	Marks		
1	The 8086 Microprocessor: Introduction to 80	86- Microprocessor				
	architecture - Addressing modes - Instruct	ion set and assembler				
	directives – Assembly language programming – Modular Programming – Linking and Relocation – Stacks – Procedures – Macros – Interrupts and interrupt service routines – Byte and String					
	Manipulation.					
	8086 System bus structure: 8086 signals -	Basic configurations –				
_	System bus timing –System design using 808		08			
2	Introduction to Multiprogramming – Syst					
	Multiprocessor configurations – Coprocesso					
	loosely Coupled configurations – Introd	duction to advanced				
	processors.					
	I/O INTERFACING: Memory Interfacing and I/	-				
	communication interface – Serial communic		0.0			
2	and A/D Interface – Timer – Keyboard		08			
3	Interrupt controller –DMA controller -					
	applications Case studies: Traffic Light cont					
	display, Keyboard display interface and Alarm					
4	Microcontroller: Architecture of 8051	•	0.0			
4	Registers(SFRs) – I/O Pins Ports and Circui		08			
	Addressing modes – Assembly language progr	ramming.				
	Interfacing Microcontroller: Programming					
_	Port Programming – Interrupts Programmii		06			
5	Interfacing – ADC, DAC & Sensor Interfacing					
	Interface- Stepper Motor and Waveform ger	neration – Comparison				

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

of I	Microprocessor, Microcontroller, PIC and ARM processors		
------	---	--	--

Text books:

- 1. Advanced Microprocessors and Peripheral, Koshor M Bhurchandi, Ajay Kumar Ray, 3rd Edition, MC Graw hill education.
- 2. Microprocessor & Interfacing, D.V. Hall, Mc Graw Hill.
- 3. The 8051 microcontroller, Ayala, Thomson.

Ref erence books:

- 1. Advanced Microprocessors, Y. Rajasree, New Age international Publishers.
- 2. An introduction to the Intel family of Microprocessors, James L. Antonakos, Pearson Education,
- 3. The 8051 Microcontroller and Embedded systems, Muhammad Ali Mazidi & J. G. Mazidi, Pearson Education.
- 4. The 8086 Microprocessors: Programming & Interfacing the PC, K.J.Ayala, Thomson.
- 5. Microprocessor & Peripherals, S.P. Chowdhury & S. Chowdhury, Scitech.
- 6. Microchip technology data sheet, www.microchip.comerence books

Course Outcome:

After completion of this course, the learners will be able to

- 1. explain the architecture of 8086 and 8051.
- 2. do assembly language programming of 8086, 8051
- 3. interface different peripheral with 8086 and 8051
- 4. develop micro processor/ microcontroller based systems.
- 5. compare microprocessor, microcontroller, PIC and ARM processors

Special Remarks (if any)

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

Name	of the course	DIGITAL CONTROL	LSYSTEM	
Cours	se Code: PE-EE-601A	Semester: 6th		
Durat	ion: 6 months	Maximum Marks: 100)	
	ing Scheme	Examination Scheme		
	y: 3 hrs/week	Mid Semester Exam: 1		
	al: 0hr/week	Assignment & Quiz: 1		
Credit	Points: 3		05 Marks	
		End Semester Exam:	70 Marks	
Ohied	tive·			
Objective: 1. To understand the principle of sampling and reconstruction of signals.				
2.	To find Z-tranaform and inverse Z-transform	<u> </u>		
3.	To carry out the analysis and design of digital			
4.	To design compensators for digital control sys	*	pecifications.	
5.	To represent digital control systems using stat		•	
6.	To analyze the effect sampling on stability, co		bility.	
7.	To design digital controllers for industrial app			
8.	To solve numerical problems on the topics stu	died.		
Pre-R	equisite			
1.	Control system (PC-EE-503)			
Unit	Content		Hrs	Marks
1	Sampling and reconstruction: Introduction	n, Examples of Data		
	control systems – Digital to Analog conversio	n and Analog to Digital	03	
	conversion, sample and hold operations.			
	Z-transform: Introduction, Linear differe	nce equations, pulse		
	response, Z – transforms, Theorems	of Z – Transforms,	05	
2	the inverse Z – transforms, Modified Z- Transf	forms		
	Z- Plane analysis of discrete-time control	system: Z-Transform		
	method for solving difference equations; Puls	se transforms function,	05	
	block diagram analysis of sampled – da	ta systems, mapping		
3	between s-plane and z-plane.			
	· ·			
	State space analysis: State Space Represent			
4	systems, Pulse Transfer Function Matrix	•		
	state space equations, State transition mat	•	06	
	Methods for Computation	of State	06	
	Transition Matrix, Discretization of continuo	ous time state – space		
	equations.			
	Controllability and observability: Concepts	•	0.4	
_	Observability, Tests for controllability and	· · · · · · · · · · · · · · · · · · ·	04	
5	between Controllability and Observability	•		
	Observability conditions for Pulse Transfer Fu			
6	Stabilty analysis: Mapping between the S-Pl		05	
	Primary strips and Complementary	•		
	frequency loci, Constant damping ratio loc	i, Stability Analysis of		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

	closed	loop	systems	in .	th	e	Z-P	lane.	Jury		
	stablility	test –	Stability	Analysis	by	use	of	the	Bilinear		
	Transforn	nation and	d Routh St	ability crite	erion						
7.	Design of	discrete	time cont	trol syster	n by	conv	entic	nal n	nethods:		
	Transient	and stea	dy – State	response	Ana	lysis -	– De	sign b	pased on		
	the	freque	ncy	respons	e		met	hod	_	06	
	Bilinear T	ransforma	ation and	Design pro	cedu	ıre in	the v	w-plai	ne, Lead,		
	Lag	and	d	Lead-L	ag		(comp	ensators		
	and digita	I PID cont	trollers.								
8.	State fee	dback cor	ntrollers a	nd observ	ers: [Desigr	of s	tate 1	feedback		
	controller	through	n pole pla	acement	– Ne	ecessa	ary a	and s	sufficient	05	
	condition	s,		Ackerman	ı's				formula.		
	State Obs	ervers – F	ull order a	ınd Reduc	ed or	der o	bserv	ers.			

Text book:

- 1. Digital Control and State Variable Methods, M. Gopal, TMH Publishers
- 2. Discrete-time Control Systems, K. Ogata, Pearson Education,
- 3. Digital Control Systems, B.C. Kuo, Wiley Publications.
- 4. Control System Engineering, I.J. Nagrath, M. Gopal, New age International.

Reference books

- 1. Digital control of dynamic systems, Gene F. Franklin, J. David Powell, and Michael Workman 3rd ed, 1998, Addison-Wesley.
- 2. Digital Control Systems, design, identification and implementation, Landau, Ioan Doré, Zito, Gianluca, Springer-Verlag London.

Course Outcome:

After completion of this course, the learners will be able to

- 1. explain the principle of sampling and reconstrction of analog signal.
- 2. perform Z-transformation and inverse Z-tranaformation of systems.
- 3. analyse and design digital control systems.
- 4. design compensators for digital control system to achieve desired specifications.
- 5. represent digital control systems using state space models.
- 6. analyze the effect sampling on stability, controllability and observability.

Special Remarks (if any)

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

Name	of the course	HVDC TRANSMISSI	ON		
Cours	se Code: PE-EE-601B	Semester: 6th			
Durat	ion: 6 months	Maximum Marks: 100	0		
	ning Scheme	Examination Scheme			
	y: 3 hrs/week	Mid Semester Exam: 1			
	al: 0hr/week	Assignment & Quiz:			
	cal: hrs/week		05 Marks		
Credit	Points: 3	End Semester Exam:	70 Marks		
01:	,•				
Objec		:			
1. 2.	1 2				
3.	To analyse HVDC converters. To understand methods of control of HVDC s	grigtom			
4.	To understand methods of control of HVDCs To understand causes of fault and protection a		g.		
5.	To understand causes of fault and protection a To understand function of smooting reactor ar	<u> </u>			
6.	To understand methods of reactive power cor				
7.	To solve numerical problems on the topics stu				
	equisite	idicu.			
1.	Electric Circuit Theory (PC-EE-301)				
2.	Power system-1 (PC-EE-502)				
3.	Control system (PC-EE-503)				
4.	Power Electronics (PC-EE-504)				
Unit	Content		Hrs	Marks	
1	DC power transmission technology: Introd	uction, Comparison of			
	HVAC and HVDC transmission system,	Applications of DC			
	transmission, Description of DC t	ransmission system,	04		
	Configurations, Modern trends in DC transmis	ssion.			
	Analysis of HVDC converters: Pulse numbe	r, Choice of converter			
	configuration, Simplified analysis of Graetz ci	ircuit, Converter bridge	06		
2	characteristics, Characteristics of a twelve-pu	ilse converter, Detailed			
	analysis of converters with and without overla	ар			
	Converter and HVDC system control: General	al, Principles of DC link			
	control, Converter control characteristics, Sys	stem control hierarchy,	06		
	Firing angle control, Current and extinction	angle control, Starting			
3	and stopping of DC link, Power control, Highe	r level controllers.			
	Conventor faults and materials Conventor	tor faulte Dratastiss			
4	Converter faults and protection: Conver		05		
4	against the tancers, the terral get in a terral content of the get				
	arresters, Protection against over-voltages.				
	Smoothing reactor and DC line: Introduction, Smoothing reactors,				
			06		
5	breakers, Monopolar operation, Effects of p	roximity of AC and DC			
	transmission lines.				
6	Reactive power control: Reactive power re				
	state, Sources of reactive power, Static V	/AR systems, Reactive	06		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

	power control during transients, Harmonics and filters, Generation of harmonics, Design of AC filters and DC filters.		
7.	Component models for the analysis of ac/dc systems: General,		
	Converter model, Converter control, Modelling of DC network,		
	Modelling of AC networks.	06	
	Power flow analysis in AC/DC systems: General, Modelling of DC		
	links, Solution of DC load flow, Discussion, Per unit system for DC		
	quantities.		

Text book:

1. HVDC Power transmission systems, K.R. Padiyar, Third Edition, New Age International Publishers

Reference books

- 1. Power Transmission by Direct Current, Erich Uhlmann, Fourth Indian Reprint, Springer International Edition, 2012.
- 2. HVDC Transmission, S Kamakshaiah, V Kamaraju, 2nd Edition, Mcgraw Hill Education, 2020.
- 3. Direct Current Transmission, E.W.Kimbark, Wiley–Blackwell; Volume 1 edition (1 January 1971)
- 4. H.V.D.C Transmission , J Arrillaga , 1st Edition, The Institution of Engineering and Technology, 1998

Course Outcome:

After completion of this course, the learners will be able to

- 1. choose intelligently AC and DC transmission systems for the dedicated application(s).
- 2. identify the suitable two-level/multilevel configuration for high power converters.
- 3. select the suitable protection method for various converter faults.
- 4. identify suitable reactive power compensation method.
- 5. decide the configuration for harmonic mitigation on both AC and DC sides..
- 6. solve numerical problems related to converters, power flow analysis, reactive power control.

Special Remarks (if any)

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

Name	of the course	CHINE DESIGN	N	
		Semester: 6th		
		Maximum Marks: 100)	
Teach	ning Scheme	Examination Scheme		
Theor	y: 3 hrs/week	Mid Semester Exam: 1	5 Marks	
		Assignment & Quiz: 1	0 Marks	
Credit)5 Marks	
		End Semester Exam: 7	70 Marks	
Objec		D1		
1.	To understand the baisc principle of design of Electric machines.			
2.	To understand basics of design of Transformer			nachines.
3.	To understand different factors that influence d			
4. 5.	To undertand the need and use software tools	<u> </u>	nachines	
	To solve numerical problems on the topics stud	11ea		
1.	Requisite Electric Machine-I (PC-EE-401)			
2.	Electric Machine-II (PC-EE-401)			
Unit	Content		Hrs	Marks
1	Introduction: Major considerations in Electr	rical Machine Design	пів	IVIAIKS
1	Electrical Engineering Materials – Space factor			
	Electrical and Magnetic loadings - Thermal		04	
			04	
	flow – Temperature rise and Insulating N	viaterials - Ratifig Oi		
	machines – Standard specifications.	osions 10/A output for		
	Transformer: Output Equations – Main Dimen	· ·	10	
	single and three phase transformers — Wil	·	10	
2	Design of core and winding — Overall dim			
~	characteristics – No load current – T	•		
	Transformers – Design of Tank - Meth Transformers.	nous of cooling of		
		ation moston Main		
3	Induction motors: Output equation of Indu		10	
3	dimensions – Choice of Average flux density		10	
	Rules for selecting rotor slots of squirrel cage	•		
	rotor bars & slots – Design of end rings – Des	-		
	Magnetic leakage calculations – Leakage re			
	machines- Magnetizing current - Short circui	t current – Operating		
	characteristics- Losses and Efficiency.			
	Synchronous machines: Output equations – c		10	
Magnetic Loading – Design of salient pole machines – Short circuit			10	
4	ratio – shape of pole face – Armature	-		
	parameters – Estimation of air gap length – D			
	of damper winding – Determination of full loa			
	of field winding – Design of turbo alternators –	_		
	Computer aided Design (CAD): Limitation			
	traditional designs, need for CAD analysis,	synthesis and hybrid	05	

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

methods, design optimization methods, variable	es, constraints and
objective function, problem formulation.	

Text book:

- 1. A Course in Electrical Machine Design, A.K. Sawhney, Dhanpat rai and sons.
- 2. Electrical machine design, V. rajini, V.S. Nagarajan, Pearson India education services Pvt. Ltd.
- 3. Computer Aided Design of Electrical Machine, K. M. V. Murthy, B.S. Publications.

Reference books

- 1. Design and Testing of Electrical Machines, M.V.Deshpande, PHI
- 2. Principles of Electrical Machine Design, 3rd Edition, S.K. sen, Oxf-Ibh
- 3. Computer Aided Design of Electrical Equipment, M. Ramamoorthy, East-West Press.

Course Outcome:

After completion of this course, the learners will be able to

- 1. specify the rating of electrical machines with standard specifications.
- 2. explain the principles of electrical machine design and carry out basic design of an ac machine
- 3. determine the various factors which influence the design of electrical, magnetic and thermal loading of electrical machines
- 4. explain the construction and performance characteristics of electrical machines.
- 5. use software tools to do design calculations.

Special Remarks (if any)

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

Name	e of the course	ELECTRICAL AND	HYBRID VEH	IICLE
Cours	se Code: PE-EE-602A	Semester: 6th		
Dura	tion: 6 months	Maximum Marks: 100		
	ning Scheme	Examination Scheme		
	y: 3 hrs/week	Mid Semester Exam: 1		
	ial: 0 hr/week	Assignment & Quiz: 1	10 Marks 05 Marks	
Credi	Credit Points: 3 Attendance:			
		End Semester Exam: '	/U Marks	
Objec	etive:			
1.	To understand the basic difference between co	onventional and Hybrid	vehicles.	
2.	To understand different configuration and con	Ţ		
3.	To understand energy storage system in Hybri			
4.	To understand different energy management s	trategies of Hybrid vehic	cles.	
5.	To solve numerical problems on the topics stu	ıdied		
Pre-R	Requisite			
1.	Electric Machine-I (PC-EE-401)			
2.	Electric Machine-II (PC-EE-501)		1	
Unit	Content		Hrs	Marks
2	Introduction: Conventional Vehicles: Basics of vehicle power source characterization, transing mathematical models to describe vehicle per Introduction to Hybrid Electric Vehicles: electric vehicles, social and environmental and electric vehicles, impact of modern supplies. Hybrid Electric Drive-trains: Basic concept introduction to various hybrid drive-train toontrol in hybrid drive-train topologies, fuel expected traction, introduction to various electric power flow control in electric drive-train topologies. Electric Propulsion unit: Introduction to ele in hybrid and electric vehicles, Configuration Motor drives, Configuration and control of Permanent Configuration and control of Switch Reluctar system efficiency.	mission characteristics, formance. History of hybrid and importance of hybrid drive-trains on energy of of hybrid traction, opologies, power flow efficiency analysis. It concept of electric drivetrain topologies, poologies, fuel efficiency ctric components used on and control of DC induction Motor drives, Magnet Motor drives,	10	
3	Energy Storage: Energy Storage: Introduct Requirements in Hybrid and Electric Vehicles storage and its analysis, Fuel Cell based e analysis, Super Capacitor based energy storage and its analysis different energy storage devices. Sizing the	s, Battery based energy energy storage and its brage and its analysis, alysis, Hybridization of		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

	the electric machine and the internal combustion engine (ICE), Sizing the propulsion motor, sizing the power electronics, selecting the energy storage technology, Communications, supporting subsystems		
4	Energy Management Strategies: Energy Management Strategies: Introduction to energy management strategies used in hybrid and electric vehicles, classification of different energy management strategies, comparison of different energy management strategies, implementation issues of energy management strategies.		
5	Case Studies: Design of a Hybrid Electric Vehicle (HEV), Design of a Battery Electric Vehicle (BEV).	05	

Text book:

- 1. Electric and Hybrid Vehicles: Design Fundamentals, Iqbal Hussein, CRC Press.
- 2. Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives, C. Mi, M. A. Masrur and D. W. Gao, John Wiley & Sons, .
- 3. Hybrid Electric Vehicles: Energy Management Strategies, Onori Simona, Serrao Lorenzo and Rizzoni Giorgio, Springer.
- 4. Electric and Hybrid Vehicles, T. Denton, Routledge.

Reference books

- 1. Electric Vehicle Technology Explained, James Larminie, John Lowry, Wiley.
- 2. Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design, Mehrdad Ehsani, YimiGao, Sebastian E. Gay, Ali Emadi CRC Press, 2004.

Course Outcome:

After completion of this course, the learners will be able to

- 1. explain the principle of Electric traction.
- 2. choose a suitable drive scheme for developing an electric hybrid vehicle depending on resources.
- 3. design and develop basic schemes of electric vehicles and hybrid electric vehicles.
- 4. choose proper energy storage systems for vehicle applications
- 5. implement different energy management strategies for hybrid vehicle.

Special Remarks (if any)

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

Name	of the course	POWER QUALITY A	AND FACTS	
Cours	se Code: PE-EE-602B	Semester: 6th		
Durat	cion: 6 months	Maximum Marks: 100)	
Teach	ing Scheme	Examination Scheme		
Theor	y: 3 hrs/week	Mid Semester Exam: 1	5 Marks	
Tutori	Futorial: 0 hr/week Assignment & Quiz:			
Credit	Credit Points: 3 Attendance:			
	End Semester Exam:			
Objec	etive:			
1.	To understand the characteristics of ac transm	ission and the effect of s	hunt and series 1	eactive
	compensation.			
2.	To understand the working principles of FAC	TS devices and their ope	rating character	stics.
3.	To understand the basic concepts of power qu			
4.	To understand the working principles of device		ality.	
5.	To solve numerical problems on the topics stu	ıdied		
Pre-R	equisite			
1.	Power system-I (PC-EE-502)			
2.	Control system (PC-EE-503)			
3.	Power Electronics (PC-EE-504)			
Unit	Content		Hrs	Marks
	Transmission Lines and Series/Shun	t Reactive Power		
	Compensation: Basics of AC Transm	nission. Analysis of		
	uncompensated AC transmission lines. Pa	ssive Reactive Power	04	
	Compensation. Shunt and series compensati	on at the mid-point of		
1	an AC line. Comparison of Series and Shunt Co	ompensation.		
	Thyristor-based Flexible AC Transmission	Controllers (FACTS):		
	Description and Characteristics of Thyristor			
	Static VAR Compensator (SVC), Thyrist			
2	Capacitor (TCSC), Thyristor Controlled Braki		06	
	Pole Single Throw (SPST) Switch. Con			
	Operation, Harmonics and control of SVC ar	•		
	Limiter.			
	Voltage Source Converter based (FACTS)	controllers: Voltage		
	Source Converters (VSC): Six Pulse VSC, Multi			
	Converters, Pulse-Width Modulation for VS	•		
3	Elimination, Sinusoidal PWM and Space			
	•		08	
	STATCOM: Principle of Operation, Reactive Power Control: Type and Type II controllers, Static Synchronous Series Compensation			
		·		
	(SSSC) and Unified Power Flow Controlle			
	Operation and Control. Working principle of	•		
	Controller. Other Devices: GTO Controlled	Series Compensator.		
	Fault Current Limiter.			
	Application of FACTS : Application of FACTS	· ·		
	control and stability improvement. Simulat	ion example of power		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

4	swing damping in a single-machine infinite bus system using a TCSC. Simulation example of voltage regulation of transmission mid-point voltage using a STATCOM.	
5	Power Quality Problems in Distribution Systems: Power Quality problems in distribution systems: Transient and Steady state variations in voltage and frequency. Unbalance, Sags, Swells, Interruptions, Wave-form Distortions: harmonics, noise, notching, dc-offsets, fluctuations. Flicker and its measurement. Tolerance of Equipment: CBEMA curve.	04
6.	DSTATCOM : Reactive Power Compensation, Harmonics and Unbalance mitigation in Distribution Systems using DSTATCOM and Shunt Active Filters. Synchronous Reference Frame Extraction of Reference Currents. Current Control Techniques for DSTATCOM.	06
7.	Dynamic Voltage Restorer and Unified Power Quality Conditioner: Voltage Sag/Swell mitigation: Dynamic Voltage Restorer – Working Principle and Control Strategies. Series Active Filtering. Unified Power Quality Conditioner (UPQC): Working Principle. Capabilities and Control Strategies.	06

Text book:

1. FACTS Controllers in Power Transmission and Distribution, N K. R. Padiyar, New Age International (P) Ltd. 2007.

Reference books

- 1. Understanding FACTS: Concepts and Technology of FACTS Systems, N. G. Hingorani and L. Gyugyi Wiley-IEEE Press, 1999.
- 2. Reactive Power Control in Electric Systems, T. J. E. Miller, John Wiley and Sons, New York, 1983.
- 3. Electrical Power Systems Quality", R. C. Dugan, McGraw Hill Education, 2012.
- 4. Electric Power Quality, G. T. Heydt, Stars in a Circle Publications, 1991

Course Outcome:

After completion of this course, the learners will be able to

- 1. analyse uncompensated AC transmission line.
- 2. explain the working principles of FACTS devices and their operating characteristics.
- 3. apply FACTS devices for power flow control and stabilty.
- 4. identify different issues of power quality in distribution system.
- 5. apply different compensation and control techniques for DSTATCOM
- 6. explain working principle of dynamic voltage restorer and UPQC

Special Remarks (if any)

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

Name	Name of the course INDUSTRIAL ELE			TEMS	
Cours	se Code: PE-EE-602C	Semester: 6th			
Durat	tion: 6 months	Maximum Marks: 100)		
	0	Examination Scheme			
		Mid Semester Exam: 15 Marks			
		Assignment & Quiz: 1			
Credit			05 Marks		
		End Semester Exam: 7	70 Marks		
Ohio	Objective:				
1.	To understand the electrical wiring systems w	ith standard symbols of	drawings and SI	D for	
1.	residential, commercial and industrial consume	•	nawings and St	20 101	
2.	To understand various components of industria				
3.	To analyze and selec tthe proper size of various	Ţ	onents		
4.	To understand methods of automation of Indus				
5.	To solve numerical problems on the topics stud				
Pre-R	Requisite				
1.	Power system-I (PC-EE-502)				
2.	Control system (PC-EE-503)				
3.	Power Electronics (PC-EE-504)				
Unit	Content		Hrs	Marks	
	Electrical System Components: LT system	wiring components,			
	selection of cables, wires, switches, distrib				
	system, Tariff structure, protection componer		06		
1	ELCB, inverse current characteristics, symbol				
1	(SLD) of a wiring system, Contactor, Isolator,	Relays, MPCB, Electric			
	shock and Electrical safety practices				
	Residential and Commercial Electrical System				
	and commercial wiring systems, general rul				
	installation, load calculation and sizing of	_	00		
2	switch, distribution board and protection dev	• • •	08		
	calculations, requirements of commercial				
	lighting scheme and number of lamps, ea	•			
	installation, selection and sizing of component				
	Illumination Systems : Understanding various				
	lumen, intensity, candle power, lamp	• • • •			
3	consumption, glare, space to height ratio	_			
3	depreciation factor, various illumination so	·	06		
	lamps and modern luminaries like CFL, LED	•	00		
	energy saving in illumination systems, design				
	for a residential and commercial premises, floo				
	,	onnection, industrial			
4	substation, Transformer selection, Industrial I		06		
7	of motors, SLD, Cable and Switchgear		00		
	Protection, Earthing design, Power factor				

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

	calculations, type of compensation, Introduction to PCC, MCC		
	panels. Specifications of LT Breakers, MCB and other LT panel		
	components.		
	Industrial Electrical Systems II: DG Systems, UPS System, Electrical		
5	Systems for the elevators, Battery banks, Sizing the DG, UPS and	06	
	Battery Banks, Selection of UPS and Battery Banks.		
6.	6. Industrial Electrical System Automation: Study of basic PLC, Role of		
in automation, advantages of process automation, PLC based			
control system design, Panel Metering and Introduction to SCADA		06	
	system for distribution automation.		

Text book:

- 1. Electrical Wiring, Estimating & Costing, S. L. Uppal and G. C. Garg, Khanna publishers, 2008.
- 2. Electrical Design, Estimating & Costing, K. B. Raina, New age International, 2007.

Reference books

- 1. Electrical estimating and costing, S. Singh and R. D. Singh, Dhanpat Rai and Co., 1997.
- 2. Web site for IS Standards.
- 3. Residential Commercial and Industrial Systems, H. Joshi, McGraw Hill Education, 2008.

Course Outcome:

After completion of this course, the learners will be able to

- 1. Represent electrical wiring system for residential, commercial and industrial consumers.
- 2. Determine the rating of components of residential and commercial electrical systems.
- 3. Design lighting scheme for a residential and commercial premises.
- 4. Select transformer, switchgear, protection equipments for industrial electrical systems.
- 5. explain methods of automation of Industrial Electrical Systems
- 6. Solve numerical problems related to earthing system, lighting scheme, power factor correction.

Special Remarks (if any)

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

Name	of the course	DIGITAL SIGNAL P	ROCESSING	
Cours	se Code: OE-EE-601A	Semester: 6th		
Durat	ion: 6 months	Maximum Marks: 100		
	ning Scheme	Examination Scheme		
	y: 3 hrs/week	Mid Semester Exam: 1		
	al: 0 hr/week	Assignment & Quiz: 1		
Credit	Points: 3		05 Marks	
		End Semester Exam:	70 Marks	
Obia	4*			
Object 1.	To understand sampling and reconstruction of	of signal		
2.	To understand sampling and reconstruction of Understand the method of Z-transform and		Signal and its n	roportios
3.	To understand Discrete Fourier Transform	inverse Z- transform of	signal and its p	Toperties
4.	To understand methods of design of Digital to	filters		
5.	To understand applications of Digital signal p			
6.	To solve numerical problems on the topics stu			
	equisite			
1.	Electric circuit theory (PC-EE-301)			
2.	Control system (PC-EE-503)			
Unit	Content		Hrs	Marks
	Discrete-time signals and systems: Disc	crete time signals and		
	systems: Sequences; representation of signals on orthogonal			
	basis; Representation of discrete systems using difference		06	
equations, Sampling and reconstruction of signals - aliasing;				
1	Sampling theorem and Nyquist rate.			
Z-transform: z-Transform, Region of convergence, Analysis				
of Linear Shift Invariant systems using z-transform, Properties 06			06	
	of z-transform for causal signals, Interpr	-		
2	z-domain, Inverse z- transforms.	,		
	Discrete Fourier Transform: Frequence	cy Domain Analysis.		
	Discrete Fourier Transform (DFT),			
	Convolution of signals, Fast Fourier Transform Algorithm,		08	
3	Parseval's Identity, Implementation of Dis	_		
	Tursevar s racinity, implementation of Bis	serete Time Systems.		
	Design of Digital filters: Design of	FIR Digital filters:		
	Window method, Park-McClellan's met	thod. Design of IIR		
	Digital Filters: Butterworth, Cheby	shev and Elliptic		
4	Approximations; Low-pass, Band-pass,	Bandstop and High-	12	
	pass filters. Effect of finite register length	n in FIR filter design.	12	
	Parametric and non-parametric s	pectral estimation.		
Introduction to multi-rate signal processing				
	Applications of Digital Signal Processin	ng: Correlation		
5	Functions and Power Spectra, Stationary I	Processes, Optimal		
			06	

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

filtering using ARMA Model, Linear Mean-Square Estimation,	
Wiener Filter.	

Text book:

- 1. Digital Signal Processing-A computer based approach, S. Mitra, TMH
- 2. Digital Signal Processing: Principles, Algorithms & Application, J.C. Proakis & M.G. Manslakis, PHI
- 3. Fundamental of Digital Signal Processing using MATLAB, Robert J. Schilling, S.L. Harris, Cengage Learning.

Reference books

- 1. Digital Signal Processing-implementation using DSP microprocessors with examples from TMS320C54XX, Avtar Singh & S. Srinivasan, Cengage Learning
- 2. Digital Signal Processing, Chen, OUP
- 3. Digital Signal Processing, Johnson, PHI
- 4. Digital Signal Processing using MATLAB, Ingle, Vikas.
- 5. Digital Signal Processing, Ifeachor, Pearson Education.
- 6. Digital Signal Processing, A.V. Oppenhein & R.W. Shaffer, PHI
- 7. Theory and application of Digital Signal Processing, L.R. Rabiner & B. Gold, PHI
- 8. Digital Signal Processing, Ashok Ambarder, Cengage Learning.
- 9. Digital Signal Processing, S. Salivahanan, A. Vallavaris & C. Gnanpruja, TMH.
- 10. Xilinx FPGA user manual and application notes.

Course Outcome:

After completion of this course, the learners will be able to

- 1. represent signals mathematically in continuous and discrete-time and in the frequency domain.
- 2. analyse discrete-time systems using z-transform.
- 3. explain the Discrete-Fourier Transform (DFT) and the FFT algorithms.
- 4. design digital filters for various applications.
- 5. apply digital signal processing for the analysis of real-life signals.

Special Remarks (if any)

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

Name of the course		COMMUNICATION ENGINEERING		
Course Code: OE-EE-601B		Semester: 6th		
Durat	tion: 6 months	Maximum Marks: 100		
	ning Scheme	Examination Scheme		
	y: 3 hrs/week	Mid Semester Exam: 1		
	al: 0 hr/week	Assignment & Quiz: 1		
Credit	Points: 3		05 Marks	
		End Semester Exam:	70 Marks	
Ohio	4			
Object 1.	To understand the AM, FM and PM schemes	with reference to SNP		
2.	To understand the AM, FM and FM schemes To understand the performance of ASK, FSK,		digital commu	nication
۷.	system	, rsk, drsk, Qrsk iii ë	a digital collillu	ilication
3.	To understand the source coding and channel	coding schemes for a gi	ven communica	tion link
] .	To understand the source coding and chamber	coding senemes for a gr	ven communica	
4.	To understand the band width requirement a	and probability of error i	n various digita	l modulation
	systems	1	Č	
5.	To understand various digital modulation met	hods		
6.	To solve numerical problems on the topics stu	idied		
	equisite			
1.	Analog Electronics (PC-EE 302)			
2.	Digital Electronics (PC-EE 402)		ı	
Unit	Unit Content		Hrs	Marks
	Elements of communication system:			
	communication system, origin of noise and it	· •		
	SNR in system design. Basic principle of lir			
1	Generation of AM waves, Demodulation			
1	principle of nonlinear (FM, PM) modulation		12	
	waves. Demodulation of FM waves. Sampli		12	
	rate, impulse sampling, reconstruction fro			
	Analog pulse modulation-PAM (natural &			
	PWM, PPM. Basic concept of Pulse code mod	dulation, Block diagram		
	of PCM, Multiplexing-TDM, FDM.			
	Digital transmission: Concept of Quantization			
	Uniform quantizer, Non-uniform quantizer	•		
2	Encoding, coding efficiency. Line coding &			
2	AMI, Manchester coding, PCM, DPCM	·	08	
	transmission, Matched filter, error rate du		00	
	cosine function, Nyquist criterion for dist			
	binary transmission, Eye pattern, Signal power in binary digital			
	signal.	n kashulawa Dik wate		
	Digital carrier modulation & demodulation	•		
	Baud rate, Information capacity, Shanon's	-	10	
3	Introduction to the different digital mo	·	10	
	ASK.FSK, PSK, BPSK, QPSK, mention of	9 RL2K' TO RL2K'		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

	Introduction to QAM, basic of 8 QAM, 16 QAM. Basic concept of Delta modulating, Adaptive delta modulation. Introduction to the concept DPCM. Basic concept of spread spectrum modulation.	
4	Introduction to coding theory: Introduction, News value & Information content, Entropy, Mutual information, Information rate, Shanon-Fano algorithm for encoding, Shanon's theorem-source coding theorem, Channel coding theorem, Information capacity theorem. Basic principle of Error control & coding.	

Text book:

- 1. An Introduction to Analog and Digital communication, Simon Haykin, Wiely India.
- 2. Analog communication system, P. Chakrabarti, Dhanpat Rai & Co.
- 3. Principle of digital communication, P. Chakrabarti, Dhanpat Rai & Co.
- 4. Modern Digital and Analog Communication systems, B.P. Lathi, Oxford university press

Reference books

- 1. Digital and Analog communication Systems, Leon W Couch II, Pearson Education Asia.
- 2. Communication Systems, A.B. Calson, Mc Graw Hill.

Course Outcome:

After completion of this course, the learners will be able to

- 1. compare the performance of AM, FM and PM schemes with reference to SNR
- 2. explain noise as a random process and its effect on communication receivers
- 3. evaluate the performance of ASK, FSK, PSK, BPSK, QPSK in a digital communication system
- 4. identify source coding and channel coding schemes for a given communication link
- 5. analyze various digital modulation methods
- 6. compute band width requirement and probability of error in various digital modulation systems

Special Remarks (if any)

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

Name of the course V		VLSI AND MICRO E	LECTRONICS	S
Course Code: OE-EE-601C		Semester: 6th		
Durat	tion: 6 months	Maximum Marks: 100	0	
Teaching Scheme		Examination Scheme		
	y: 3 hrs/week	Mid Semester Exam: 1	5 Marks	
	ial: 0 hr/week	Assignment & Quiz: 1	10 Marks	
Credit	Points: 3		05 Marks	
	End Semester Exam: 70 Ma			
Objec				
1.	To understand the concept of VLSI design			
2.	To understand the basics of MOS structure			
3.	To understand the process of VLSI fabricatio			
4.	To understand the principle of logic circuit de	esign with hardware desc	cription language	e
	Requisite			
1.	Analog Electronics (PC-EE 302)			
2.	Digital Electronics (PC-EE 402)		TT	N. 6. 1
Unit	Content		Hrs	Marks
	Introduction to VLSI Design: VLSI Design (•		
	Scale of Integration (SSI, MSI, LSI, VLSI, ULSI – basic idea only),		08	
	Types of VLSI Chips (Analog & Digital VLSI o		08	
1	ASIC, PLA, FPGA), Design principles (Digital VLSI – Concept of			
Regularity, Granularity etc), Design Domains (Behavioral, Structural,				
	Physical), Y-Chart, Digital VLSI Design Steps.			
MOS structure: E-MOS & D-MOS, Charge inversion in E-MOS,				
	Threshold voltage, Flat band voltage, Poter	itial balance & Charge		
2	balance, Inversion, MOS capacitances.			
2	Three Terminal MOS Structure: Body effect		12	
	Four Terminal MOS Transistor: Drain curre	•	12	
	Current-voltage equations (simple derivation	=		
	Scaling in MOSFET: Short Channel Eff	ects, General scaling,		
	Constant Voltage & Field scaling	al Catao NAND =-1-		
	CMOS: CMOS inverter, Simple Combination	iai Gates - NAND gate		
	and NOR Gate using CMOS.	make desired and collection		
	Micro-electronic Processes for VLSI	Fabrication: Silicon		
	Semiconductor Technology- An Overview		10	
3	Oxidation, Epitaxial deposition, Ion-implantat		10	
	Cleaning, Etching, Photo-lithography – Posit	tive & Negative photo-		
	resist.	- CMOC/ P		
	Basic CMOS Technology – (Steps in fabricatin	•		
	CMOS process, p-well CMOS process, Twin tub process, Silicon on insulator Layout Design Rule: Stick diagram with examples, Layout rules.			

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

4	Hardware Description Language – VHDL or Verilog Combinational	08	
	& Sequential Logic circuit Design.		

Text book:

- 1. Digital Integrated Circuit, J.M.Rabaey, Chandrasan, Nicolic, Pearson Education.
- 2. CMOS Digital Integrated Circuit, S.M.Kang & Y.Leblebici, TMH.
- 3. Modern VLSI Design, Wayne Wolf, Pearson Education.
- 4. VHDL, Bhaskar, PHI.
- 5. Advance Digital Design Using Verilog, Michel D. Celliti, PHI

Reference books

- 1. Digital Integrated Circuits, Demassa & Ciccone, John Willey & Sons.
- 2. Modern VLSI Design: system on silicon, Wayne Wolf; Addison Wesley Longman Publisher
- 3. Basic VLSI Design, Douglas A. Pucknell & Kamran Eshranghian, PHI
- 4. CMOS Circuit Design, Layout & Simulation, R.J.Baker, H.W.Lee, D.E. Boyee, PHI

Course Outcome:

After completion of this course, the learners will be able to

- 1. explain the principle of design of VLSI circuits
- 2. explain different MOS structure with characteristics
- 3. apply different processes for VLSI fabrication
- 4. use programming language for the design of logic circuits
- 5. draw the stick diagram and layout for simple MOS circuits

Special Remarks (if any)

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

Name	e of the course	ECONOMICS FOR ENGINEERS		
Course Code: HM-EE-601		Semester: 6th		
Durat	tion: 6 months	Maximum Marks: 100		
	ning Scheme	Examination Scheme		
	y: 3 hrs/week	Mid Semester Exam: 1		
	al: 0 hr/week	Assignment & Quiz: 1		
Credit	Points: 3	Attendance: 0 End Semester Exam: 7	05 Marks	
		End Semester Exam:	/U Marks	
Objec	rtive:			
1.	To understand the process of economic decision	ion making		
2.	To understand th basic financial management			
3.	To develop the skills to analyze financial state			
4.	To understand the basic of accounting			
Pre-R	Requisite			
1.	Basic understanding of Engineering processes	S		
Unit	Content		Hrs	Marks
	Economic Decisions Making – Overview, Pr	oblems, Role, Decision		
	making process.			
	Engineering Costs & Estimation — Fixed, Variable, Marginal &			
1	Average Costs, Sunk Costs, Opportunity Costs, Recurring And			
1	Nonrecurring Costs, Incremental Costs, Cash Costs vs Book Costs,		06	
	Life-Cycle Costs; Types Of Estimate, Estimating Models - PerUnit		00	
	Model, Segmenting Model, Cost Indexes, Power-Sizing Model,			
Improvement & Learning Curve, Benefits. Cash Flow, Interest and Equivalence: Cash Flow – Diagrams,				
	Cash Flow, Interest and Equivalence: Ca Categories & Computation, Time Value Of M			
	Nominal & Effective Interest.	oney, Debt repayment,		
2	Present Worth Analysis : End-Of-Year Con	wention Viewnoint Of		
	Economic Analysis Studies, Borrowed Mone	•		
	Inflation & Deflation, Taxes, Economic Crit			
	Worth Techniques, Multiple Alternatives.	eria, Apprymig i reseme	10	
	Cash Flow & Rate Of Return Analysis – Calo	culations. Treatment of		
	Salvage Value, Annual Cash Flow Analysis, Ar	· ·		
	Rate Of Return, Calculating Rate Of Return			
	Best Alternative Choosing An Analysis M			
	Analysis, Benefit-Cost Ratio Analysis, Sens			
	Analysis. Economic Analysis In The Public Se	•		
Valuing Benefits & drawbacks.		, ,		
	Uncertainty In Future Events - Estimates And	Their Use In Economic		
	Analysis, Range Of Estimates, Probabil	ity, Joint Probability		
	Distributions, Expected Value, Economic De	cision Trees, Risk, Risk		
3	vs Return, Simulation, Real Options.			
	Depreciation - Basic Aspects, Deteriorat	tion & Obsolescence,	10	
	Depreciation And Expenses, Types Of F	Property, Depreciation	10	

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

	Calculation Fundamentals, Depreciation And Capital Allowance Methods, Straight-Line Depreciation Declining Balance Depreciation, Common Elements Of Tax Regulations For Depreciation And Capital Allowances.	
4	Replacement Analysis - Replacement Analysis Decision Map, Minimum Cost Life Of A New Asset, Marginal Cost, Minimum Cost Life Problems. Inflation And Price Change — Definition, Effects, Causes, Price Change With Indexes, Types of Index, Composite vs Commodity Indexes, Use of Price Indexes In Engineering Economic Analysis, Cash Flows that inflate at different Rates.	08
5	Accounting – Function, Balance Sheet, Income Statement, Financial Ratios Capital Transactions, Cost Accounting, Direct and Indirect Costs, Indirect Cost Allocation.	

Text book:

- 1. Engineering Economics, James L.Riggs, David D. Bedworth, Sabah U. Randhawa 4e, McGraw-Hill Education.
- 2. Engineering Economics Analysis, Donald Newnan, Ted Eschembach, Jerome Lavelle, OUP
- 3. Principle of Engineering Economic Analysis, John A. White, Kenneth E.Case, David B.Pratt, Wiley

Reference books

- 1. Engineering Economy, Sullivan and Wicks, Koelling, Pearson
- 2. Engineering Economics, R.Paneer Seelvan, PHI
- 3. Engineering Economics Analysis, Michael R Lindeburg, Professional Pub

Course Outcome:

After completion of this course, the learners will be able to

- 1. evaluate the economic theories, cost concepts and pricing policies
- 2. explain the market structures and integration concepts
- 3. apply the concepts of financial management for project appraisal
- 4. explain accounting systems, the impact of inflation, taxation, depreciation
- 5. analyze financial statements using ratio analysis
- 6. explain financial planning, economic basis for replacement, project scheduling, legal and regulatory issues applied to economic investment and project-management problems

Special Remarks (if any)

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

Name of the course		POWER SYSTEM-II LABORATORY	
Course Code: PC-EE 691		Semester: 6 th	
Durati	ion: 6 months	Maximum marks:100	
Teach	ing Scheme	Examination scheme:	
Theor	y: 0 hr/week	Continuous Internal Assessment:40	
Tutori	al: 0 hr/week	External Assessment: 60	
Practi	cal: 2 hrs/week		
Credit	Points:1		
	Laboratory Experiments:		
1.	Study on the characteristics of on load time delay relay and off load time delay relay.		
2.	Test to find out polarity, ratio and magnetization characteristics of CT and PT.		
3.	Test to find out characteristics of		
	(a) under voltage relay		
	(b) earth fault relay.		
4.	Study on DC load flow		
5.	Study on AC load flow using Gauss-seidel method		
6.	Study on AC load flow using Newton Raphson method.		
7.	Study on Economic load dispatch.		
8.	Study of different transformer protection scho	emes by simulation	
9.	Study of different generator protection schemes by simulation		
10.	Study of different motor protection schemes by simulation		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering
(Applicable from the academic session 2018-2019)

11.	Study of different characteristics of over current relay.
12.	Study of different protection scheme for feeder.

Institute may develop experiments based on the theory taught in addition to experiments mentioned.

Course outcome: After completion of this course, the learners will be able to

- 1. Identify appropriate equipment and instruments for the experiment.
- 2. Test the instrument for application to the experiment.
- 3. Construct circuits with appropriate instruments and safety precautions.
- 4. Validate the characteristics of under voltage relay, over current relay, earth fault relay, on load time delay relay, off load time delay relay, CT and PT.
- 5. Validate protection schemes of transformer, generator, motor and feeder.
- 6. Apply software tools to find bus voltage, currents and power flows throughout the electrical system.
- 7. work effectively in a team

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

Name of the course		MICRO PROCESSOR AND MICRO CONTROLLER LABORATORY	
Cours	e Code: PC-EE 692	Semester: 6 th	
Durat	ion: 6 months	Maximum marks:100	
Teach	ing Scheme	Examination scheme:	
Theor	y: 0 hr/week	Continuous Internal Assessment:40	
Tutori	ial: 0 hr/week	External Assessment: 60	
Practi	cal: 2 hrs/week		
Credit	Points:1		
	Laboratory Experiments:		
1.	Programs for 16 bit arithmetic operations for 8086 (using various addressing modes)		
2.	Program for sorting an array for 8086		
3.	Program for searching for a number or chara-	cter in a string for 8086	
4.	Program for String manipulations for 8086		
5.	Program for digital clock design using 8086.		
6.	Interfacing ADC and DAC to 8086.		
7.	Parallel communication between two microp	rocessors using 8255.	
8.	Serial communication between two microprocessor kits using 8251.		
9.	Interfacing to 8086 and programming to cont	rol stepper motor.	
10.	Programming using arithmetic, logical and bit	t manipulation instructions of 8051	
11.	Program and verify Timer/Counter in 8051.		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

12.	Program and verify interrupt handling in 8051.
13.	UART operation in 8051.
14.	Interfacing LCD to 8051.
15.	Interfacing matrix or keyboard to 8051.
16.	Data transfer from peripheral to memory through DMA controller 8237/8257

Institute may develop experiments based on the theory taught in addition to experiments mentioned.

Course outcome: After completion of this course, the learners will be able to

- 1. identify appropriate equipment and instruments for the experiment
- 2. test the instrument for application to the experiment
- 3. construct circuits with appropriate instruments and safety precautions
- 4. program 8086 for arithmatic operation, sorting of array, searching for a number in a string and string manipulation
- 5. interface ADC/DAC, 8255, 8251 to 8086 and LCD, keyboard to 8051
- 6. program 8051 using arithmatic, logical and bit manipulation instructions of 8051
- 7. work effectively in a team

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

Name of the course Course Code: PC-EE 681		ELECTRICAL AND ELECTRONICS DESIGN LABORATORY Semester: 6 th		
				Duration: 6 months
Teach	ning Scheme	Examination scheme:		
Theory: 1hr/week		Continuous Internal Assessment:40		
	rial: 0 hr/week	External Assessment: 60		
Pract	ical: 4 hrs/week			
Credi	t Points:3			
	GROUP A			
1.	Designing a heating element with specified wattage, voltage and ambient temperature.			
2.	Designing an aircore grounding reactor with specified operating voltage, nominal current and fault current			
3.	Designing the power distribution system for a small township			
4.	Designing a double circuit transmission line for a given voltage level and power (MVA) transfer.			
5.	Wiring and installation design of a multistoried residential building (G+4,not less than 16 dwelling flats with a lift and common pump)			
	GROUP B			
6.	Designing an ONAN distribution transformer.			
7.	Designing a three phase squirrel cage induction motor.			
8.	Designing a three phase wound rotor induction motor.			
9.	Designing a split phase squirrel cage induction motor for a ceiling fan or a domestic pump.			
10.	Designing a permanent magnet fractional hp servo motor .			
	GROUP C			

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

11.	Design the control circuit of a Lift mechanism
12.	Design a controller for speed control of DC machine.
13.	Design a controller for speed control of AC machine.
14.	Electronic system design employing electronic hardware (Analog, Digital, Mixed signal), microcontrollers, CPLDs, and FPGAs, PCB design and layout leading to implementation of an application

Topics to be covered in the Lecture class:

1.	Basic concepts on measurements; Noise in electronic systems; Sensors and signal conditioning circuits; Introduction to electronic instrumentation and PC based data acquisition; Electronic system design, Analog system design, Interfacing of analog and digital systems, Embedded systems,; System assembly considerations	01

Evaluation Method:

- 1. The students would INDIVIDUALLY design the equipment and systems as per specifications provided by the class teacher following established procedures.
- 2. For each student, one item from each of the three groups would be chosen.
- 3. For unspecified items of specification and or specifications of wires, cables etc., data should be taken by students from handbooks and Indian standard.
- 4. Students should spend the allotted periods for carrying out design computations.
- 5. Their attendance shall be recorded.
- 6. Students should maintain a dedicated bound notebook for recording design activities like calculations, formulae used, sketches, flowcharts etc. The notebook should be regularly submitted to the class teacher for review and signature.
- 7. Evaluation would be based on (i) Class attendance (20%), (ii) Design Note Book (30%) (iii) Design Report (30%) (iv) End of semester viva (20%,)

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering
(Applicable from the academic session 2018-2019)

Institute may develop experiments based on the theory taught in addition to experiments mentioned.

Course outcome: After completion of this course, the learners will be able to

- 1. explain basic concept of measurement, noise in electronic system, sensor and signal conditioning circuits
- 2. implement PC based data acquisition systems
- 3. construct circuits with appropriate instruments and safety precautions
- 4. design heating elements, air core grounding reactor, power distribution system for small township, double circuit transmission line and Electric machines
- 5. do wiring and installation design of a multistoried residential building with lift and pump
- 6. design electronic hardware for controller of lift, speed of AC/DC motor, and for an application with analog, digital, mixed signal, microcontroller and PCB